A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Chen, Shiuan, Ph.D. Bookmark and Share

Shiuan Chen, Ph.D. - Laboratory and Research Focus

Breast Cancer Translation Research

Shiuan Chen, Ph.D.,
was one of the three investigators who originally isolated the full-length human aromatase cDNA clones. Aromatase is an enzyme that converts androgen to estrogen. Aromatase inhibitors (AIs) are important drugs to treat estrogen-dependent breast cancer. Approximately 60percent of premenopausal and 75 percent of postmenopausal breast cancer patients have estrogen-dependent carcinomas. 
 
Since aromatase is the enzyme responsible for the synthesis of estrogen, and estrogen can have a major effect in the development of breast cancer, an abnormal expression of aromatase in breast cancer cells and/or surrounding adipose stromal cells may have a significant influence on breast tumor development and growth in cancer patients. Aromatase is expressed at higher levels in human breast cancer tissue than in normal breast tissue, as measured by various biochemical assays. During the last 15 years, aromatase inhibitors (AIs) have been demonstrated to be superior to tamoxifen for the treatment of hormonal dependent breast cancer. While this new generation of aromatase inhibitors is shown to be useful in the treatment of hormonal responsive breast cancer, resistance to such endocrine therapy still develops. Through collaboration with Yate-Ching Yuan, Ph.D., (Bioinformatics), we are carrying out gene expression array experiments on AI-responsive as well as resistant cell lines that have been generated in our laboratory. We are identifying and functionally confirming the roles of genes involved in resistance.
 
These studies will produce valuable molecular information regarding the mechanisms of AI resistance, and the information will help design approaches to reduce resistance and improve the efficacy of AI treatments of breast cancer. Furthermore, our model systems are valuable to test new drugs against endocrine therapy resistance. We are working with several medical and translational research colleagues (Joanne Mortimer, M.D. , Yuan Yuan, M.D., Ph.D., George Somlo, M.D., Laura Kruper, M.D., Courtney Vito, M.D.,Paul Frankel, Ph.D., Tim Synold, Pharm.D.), and Ned Newman, Ph.D. ) to carry preclinical studies in our laboratories and then to design new therapeutic approaches to treat AI resistant breast cancer.
 
Chemoprevention and Superfood Research Program

Since the summer of 2004, Chen and 27 other investigators have initiated an effort to develop a Chemoprevention Research Program at City of Hope. Through biweekly meetings, these Beckman Research Institute of City of Hope researchers and clinicians exchange research information and ideas. Four research areas have recently been chosen to focus on. The immediate goal is to generate preliminary results in these new target areas that will lead to the development of multidiscipline translational chemoprevention research projects at our institution.
 
Our laboratory has found that grapes, mushrooms and pomegranate contain chemicals that can suppress aromatase activity.  Therefore, a diet that includes grapes, mushrooms and pomegranate would be considered preventative against breast cancer.  We are purifying and characterizing these natural anti-aromatase chemicals and evaluating their in vivo effects using animal experiments. The active chemicals in grapes have been found to be procyanidin dimers that are present at high concentrations in grape seeds. Melanie Palomares, M.D., M.S., (Population Sciences), Jeffrey Weitzel, M.D., (Clinical Cancer Genetics), Tim Synold, Pharm.D., (Experimental Therapeutics) and this laboratory have collaborated and initiated a grape seed extract clinical trial and a mushroom clinical trial based on the chemoprevention studies against breast cancer performed in our laboratory. In addition, experiments have been carried out to show that blueberry contains phytochemicals that can suppress the proliferation and migration of triple negative breast cancer in cell culture and animals. Efforts are being made to initiate a blueberry clinical trial at City of Hope to support that there is scientific proof of breast cancer superfoods plus additional information on this subject, plus additional information on this subject, and still more
 
Furthermore, we have found that mushrooms contain chemicals that act as inhibitors of steroid 5-alpha reductase. Androgen plays a critical role in prostate cancer development.  In the prostate, testosterone (an androgen) is converted to dihydrotestosterone (DHT), an androgen that is even more potent than testosterone. This conversion is catalyzed by the enzyme steroid 5-alpha reductase. An elevation of the steroid 5-alpha reductase activity in the prostate may cause benign prostate hyperplasia (a common problem in older men) and also promote the growth of prostate cancer. Animal experiments have been performed to evaluate the use of these phytochemicals as drugs in the prevention and/or treatment of prostate cancer. One clinical trial designed, based Chen’s findings, is being carried out at City of Hope with Przemyslaw Twardowski, M.D. (Medical Oncology) to evaluate the protective effect of mushroom chemicals against PSA increase in prostate cancer patients. The trial has resulted in two patients with complete response, two patients with partial response, and eight patients with stable PSA response. A recent study in the Chen laboratory has revealed that the intake of mushrooms may reduce the incidence of metabolic diseases such as fatty liver and insulin resistance.
 
In 2014, with a $2.5 million gift from the Panda Charitable Foundation, a Program in Natural Therapies has been established at City of Hope. This fund supports three lines of research to investigate natural products’ abilities to fight against cancer. Chen is investigating how the foods themselves can improve outcomes of treatment-resistance breast cancer.  In addition, the Chen laboratory is generating patient-derived xenograft (PDX) models for novel treatment of breast cancer.
 
Endocrine Disruptor Research

We are also conducting research to determine how environmental chemicals modulate the activity and expression of aromatase in human tissue. Experiments are being conducted to provide a molecular and mechanistic basis as to how phytochemicals and organochlorine compounds affect estrogen biosynthesis (e.g., aromatase function) in women. Research from Chen’s and other laboratories have revealed that estrogen receptors (ER), aromatase, and ERR are key players in breast cancer promotion and in cancer recurrence following endocrine treatment. Furthermore, proof-of-concept studies have revealed that these proteins are targets of endocrine disruptors. Based on these observations, we hypothesize that environmental chemicals will play critical roles in modulating breast cancer through ER, aromatase and ERR. We have developed a high throughput screening system (AroER Tri-Screen™) for identifying chemicals targeting ER and aromatase. The goal of this research is to develop screening assays for identifying and testing chemicals with relevance to known and suspected causes of estrogen-dependent breast cancer. Our collaborators include Yate-Ching Yuan, Ph.D. (Bioinformatics Core), Xiwei Wu, M.D., Ph.D. (Integrative Genomics Core), Christina Teng, Ph.D. (National Institute of Environmental Health Sciences), Menghang Xia, Ph.D., and Ruiling Huang, Ph.D. (National Center for Advancing Translational Sciences), Sandra Finestone, Psy.D. (Hope Wellness Center, Costa Mesa, California) and Kimlin Tam Ashing, Ph.D. (Population Sciences). Furthermore, we are collaborating with Myrto Petreas, Ph.D. (California Department of Toxic Substances Control) and Peggy Reynolds, Ph.D. (Cancer Prevention Institute of California) for the evaluation of estrogenic activity in human serum using AroER Tri-Screen.
 
Learn more about Shiuan Chen, Ph.D.
 
 
 
 

Shiuan Chen, Ph.D. Lab Members

Hei (Jason) Chan, B.S.
Graduate Student
626-256-HOPE (4673), Ext. 63056
 
Nymph Chan, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Noriko Kanaya, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Duc Nguyen, B.S.
Research Associate
626-256-HOPE (4673), Ext. 63056
 
Karineh Petrossian, M.S.
Graduate Student
626-256-HOPE (4673), Ext. 65062
 
Yuan-Zhong Wang, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Shang Wu, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65061
 

Chen, Shiuan, Ph.D.

Shiuan Chen, Ph.D. - Laboratory and Research Focus

Breast Cancer Translation Research

Shiuan Chen, Ph.D.,
was one of the three investigators who originally isolated the full-length human aromatase cDNA clones. Aromatase is an enzyme that converts androgen to estrogen. Aromatase inhibitors (AIs) are important drugs to treat estrogen-dependent breast cancer. Approximately 60percent of premenopausal and 75 percent of postmenopausal breast cancer patients have estrogen-dependent carcinomas. 
 
Since aromatase is the enzyme responsible for the synthesis of estrogen, and estrogen can have a major effect in the development of breast cancer, an abnormal expression of aromatase in breast cancer cells and/or surrounding adipose stromal cells may have a significant influence on breast tumor development and growth in cancer patients. Aromatase is expressed at higher levels in human breast cancer tissue than in normal breast tissue, as measured by various biochemical assays. During the last 15 years, aromatase inhibitors (AIs) have been demonstrated to be superior to tamoxifen for the treatment of hormonal dependent breast cancer. While this new generation of aromatase inhibitors is shown to be useful in the treatment of hormonal responsive breast cancer, resistance to such endocrine therapy still develops. Through collaboration with Yate-Ching Yuan, Ph.D., (Bioinformatics), we are carrying out gene expression array experiments on AI-responsive as well as resistant cell lines that have been generated in our laboratory. We are identifying and functionally confirming the roles of genes involved in resistance.
 
These studies will produce valuable molecular information regarding the mechanisms of AI resistance, and the information will help design approaches to reduce resistance and improve the efficacy of AI treatments of breast cancer. Furthermore, our model systems are valuable to test new drugs against endocrine therapy resistance. We are working with several medical and translational research colleagues (Joanne Mortimer, M.D. , Yuan Yuan, M.D., Ph.D., George Somlo, M.D., Laura Kruper, M.D., Courtney Vito, M.D.,Paul Frankel, Ph.D., Tim Synold, Pharm.D.), and Ned Newman, Ph.D. ) to carry preclinical studies in our laboratories and then to design new therapeutic approaches to treat AI resistant breast cancer.
 
Chemoprevention and Superfood Research Program

Since the summer of 2004, Chen and 27 other investigators have initiated an effort to develop a Chemoprevention Research Program at City of Hope. Through biweekly meetings, these Beckman Research Institute of City of Hope researchers and clinicians exchange research information and ideas. Four research areas have recently been chosen to focus on. The immediate goal is to generate preliminary results in these new target areas that will lead to the development of multidiscipline translational chemoprevention research projects at our institution.
 
Our laboratory has found that grapes, mushrooms and pomegranate contain chemicals that can suppress aromatase activity.  Therefore, a diet that includes grapes, mushrooms and pomegranate would be considered preventative against breast cancer.  We are purifying and characterizing these natural anti-aromatase chemicals and evaluating their in vivo effects using animal experiments. The active chemicals in grapes have been found to be procyanidin dimers that are present at high concentrations in grape seeds. Melanie Palomares, M.D., M.S., (Population Sciences), Jeffrey Weitzel, M.D., (Clinical Cancer Genetics), Tim Synold, Pharm.D., (Experimental Therapeutics) and this laboratory have collaborated and initiated a grape seed extract clinical trial and a mushroom clinical trial based on the chemoprevention studies against breast cancer performed in our laboratory. In addition, experiments have been carried out to show that blueberry contains phytochemicals that can suppress the proliferation and migration of triple negative breast cancer in cell culture and animals. Efforts are being made to initiate a blueberry clinical trial at City of Hope to support that there is scientific proof of breast cancer superfoods plus additional information on this subject, plus additional information on this subject, and still more
 
Furthermore, we have found that mushrooms contain chemicals that act as inhibitors of steroid 5-alpha reductase. Androgen plays a critical role in prostate cancer development.  In the prostate, testosterone (an androgen) is converted to dihydrotestosterone (DHT), an androgen that is even more potent than testosterone. This conversion is catalyzed by the enzyme steroid 5-alpha reductase. An elevation of the steroid 5-alpha reductase activity in the prostate may cause benign prostate hyperplasia (a common problem in older men) and also promote the growth of prostate cancer. Animal experiments have been performed to evaluate the use of these phytochemicals as drugs in the prevention and/or treatment of prostate cancer. One clinical trial designed, based Chen’s findings, is being carried out at City of Hope with Przemyslaw Twardowski, M.D. (Medical Oncology) to evaluate the protective effect of mushroom chemicals against PSA increase in prostate cancer patients. The trial has resulted in two patients with complete response, two patients with partial response, and eight patients with stable PSA response. A recent study in the Chen laboratory has revealed that the intake of mushrooms may reduce the incidence of metabolic diseases such as fatty liver and insulin resistance.
 
In 2014, with a $2.5 million gift from the Panda Charitable Foundation, a Program in Natural Therapies has been established at City of Hope. This fund supports three lines of research to investigate natural products’ abilities to fight against cancer. Chen is investigating how the foods themselves can improve outcomes of treatment-resistance breast cancer.  In addition, the Chen laboratory is generating patient-derived xenograft (PDX) models for novel treatment of breast cancer.
 
Endocrine Disruptor Research

We are also conducting research to determine how environmental chemicals modulate the activity and expression of aromatase in human tissue. Experiments are being conducted to provide a molecular and mechanistic basis as to how phytochemicals and organochlorine compounds affect estrogen biosynthesis (e.g., aromatase function) in women. Research from Chen’s and other laboratories have revealed that estrogen receptors (ER), aromatase, and ERR are key players in breast cancer promotion and in cancer recurrence following endocrine treatment. Furthermore, proof-of-concept studies have revealed that these proteins are targets of endocrine disruptors. Based on these observations, we hypothesize that environmental chemicals will play critical roles in modulating breast cancer through ER, aromatase and ERR. We have developed a high throughput screening system (AroER Tri-Screen™) for identifying chemicals targeting ER and aromatase. The goal of this research is to develop screening assays for identifying and testing chemicals with relevance to known and suspected causes of estrogen-dependent breast cancer. Our collaborators include Yate-Ching Yuan, Ph.D. (Bioinformatics Core), Xiwei Wu, M.D., Ph.D. (Integrative Genomics Core), Christina Teng, Ph.D. (National Institute of Environmental Health Sciences), Menghang Xia, Ph.D., and Ruiling Huang, Ph.D. (National Center for Advancing Translational Sciences), Sandra Finestone, Psy.D. (Hope Wellness Center, Costa Mesa, California) and Kimlin Tam Ashing, Ph.D. (Population Sciences). Furthermore, we are collaborating with Myrto Petreas, Ph.D. (California Department of Toxic Substances Control) and Peggy Reynolds, Ph.D. (Cancer Prevention Institute of California) for the evaluation of estrogenic activity in human serum using AroER Tri-Screen.
 
Learn more about Shiuan Chen, Ph.D.
 
 
 
 

Lab Members

Shiuan Chen, Ph.D. Lab Members

Hei (Jason) Chan, B.S.
Graduate Student
626-256-HOPE (4673), Ext. 63056
 
Nymph Chan, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Noriko Kanaya, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Duc Nguyen, B.S.
Research Associate
626-256-HOPE (4673), Ext. 63056
 
Karineh Petrossian, M.S.
Graduate Student
626-256-HOPE (4673), Ext. 65062
 
Yuan-Zhong Wang, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65062
 
Shang Wu, Ph.D.
Post-doctoral Fellow
626-256-HOPE (4673), Ext. 65061
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Surgery for head and neck cancers is unarguably complex, requiring extremely controlled movements and exceptional training. “Given where we are operating, our primary concern is maintaining speaking, swallowing and breathing,” said Ellie Maghami, M.D., chief of head and neck surgery, who recently teamed with Ro...
  • Henry Ford said it well: “Working together is success.” For biomedical researchers, this is especially true. The challenges they face often require expertise from multiple fields to find answers and solutions. Scientists seeking cures for type 1 diabetes in particular must overcome biological, medical and techn...
  • Superheroes are making plenty of headlines as the summer blockbuster season opens. At City of Hope, a 9-year-old girl wept as she hugged her own superhero: someone who had the superpower of healing her cancer. He didn’t wear flashy armor or a cape, but rather a plaid shirt. He doesn’t have a secret ...
  • Known for his ability to bring together, and lead, effective research teams, world-renowned translational research scientist and physician Larry W. Kwak, M.D., Ph.D., has joined City of Hope in a key leadership role within the institution’s new Hematologic Malignancies and Stem Cell Transplantation Instit...
  • To detect melanoma, the most deadly form of skin cancer, at its earliest, most treatable stage, conduct a head-to-toe skin self-examination once a month to check for suspicious moles.   Unusual, or atypical, moles can ultimately develop into skin cancer. Here is the ABCDE guide to potentially cancerous mol...
  • “Superheroes,” “grateful” and “lifesavers”: All are words patients have used to describe their bone marrow donors. For donors, “a great feeling” and “the right thing to do” seems to sum up their view of donating the stem cells used to save someone’s life. Bone marrow transplants of...
  • Updated: May 1, 2015 More than a decade after joining the bone marrow registry during a blood drive at the United States Military Academy at West Point, Phil Ratcliff received a call that he was a match for a leukemia patient. By then, he’d left his military career to start his own financial business, married [...
  • Updated: May 1. For Lars Nijland, the reason to become a member of a bone marrow registry was simple. “I always thought there would be no easier way to save somebody’s life,” said the 24-year-old student at Germany’s University of Goettingen, who signed up for the registry during a drive on his campus. Ni...
  • Updated: May 1 No parent ever wants to see their child hurting or sick in any way. Joanne Cooper’s daughter Amanda wasn’t sick, though. She seemed healthy. Vibrant. A straight-A student whose only major health ailment had been bouts of stress-related nausea. Then a blood test revealed that Amanda – now 9 years ...
  • Noe Chavez became animated when he recalled the story: “We were running a health event, screening folks for diabetes,” said the enthusiastic City of Hope population health researcher, “and this man comes over and starts talking to us about the trouble he’s having with his eyes. I spoke with him, listened ...
  • When Keith McKinny, 29, was first diagnosed with lymphoma and leukemia in 2010, the first person he thought of was former boyfriend Jason Mullins. The two hadn’t been in contact with each other for some time, but McKinny couldn’t think of anyone else with whom he wanted to be during that difficult period....
  • Updated: May 1 Yesenia Portillo’s search for a bone marrow donor started close to home. Her brother, sister and seven cousins all underwent testing, but none of them were a close enough match to donate the bone marrow stem cells she desperately needed for her transplant. Yesenia, now almost 16, had always been ...
  • Some of City of Hope’s most high-impact achievements have arisen from City of Hope’s globally recognized bone marrow transplant (BMT) program. The annual Karl G. Blume – Gerhard Schmidt Memorial Lecture in Transplantation Biology & Medicine — commemorating two of the most influential and revered...
  • Guido Marcucci, M.D., wants to put himself out of business. A respected clinician and esteemed basic and translational scientist, Marcucci joins City of Hope as co-director of the Gehr Family Center for Leukemia Research within the Hematologic Malignancies and Stem Cell Transplantation Institute. In this positi...
  • To say that myelofibrosis patients need more treatment options would be an understatement. The severely low platelet counts, known as thrombocytopenia, that are one of the hallmark symptoms of the disease can lead to chronic fatigue and weakness that not only damage quality of life but, ultimately, shorten life...