A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Drug Discovery and Structural Biology (DDSB) Core Bookmark and Share

Drug Discovery and Structural Biology (DDSB) Core

A primary goal of City of Hope's Comprehensive Cancer Center and its research programs is to develop new, more effective and less toxic therapies for the treatment of cancer. The Drug Discovery and Structural Biology (DDSB) Core was established to provide the necessary technical and scientific resource to facilitate drug discovery efforts consistent with the cancer center’s translational research goals. An important focus of the DDSB is on cancer drug discovery in the area of molecular-targeted therapeutics, as well as chemical biology probes. The core was established with these goals in mind and therefore is highly diverse in its services, yet highly convergent in its efforts.  The core comprises four major service components: high throughput screening, biopolymer synthesis, small molecule synthesis and X-ray crystallography. These disciplines work together in a complementary and cohesive manner to provide a full array of early-phase drug discovery services and chemical probes for biological systems. 
 
For example, the high throughput screening component of the DDSB provides unique opportunities for discovering small-molecule inhibitors of targeted proteins. Next, lead compounds can be elaborated through medicinal chemistry and structure activity relationship studies.  Once a good lead compound is developed, X-ray crystallographic analysis of the drug-protein complex begins. This is an essential component of any drug development process, since a detailed structural analysis is critical to understanding the drug-protein interaction and facilitates the optimization of ligand binding by molecular design. The general capabilities of the DDSB are significant and include the design and synthesis of highly specialized biopolymers, including siRNA-aptamers, DNA-peptide hybrid derivatives and peptides >100 amino acids in length.  In addition, the core maintains expertise in synthetic organic chemistry and is capable of complex molecule synthesis as well as the synthesis of small-molecule agonists and antagonists, imaging agents, affinity ligands, nanoparticles and focused combinatorial libraries. These compounds are used for mechanistic studies in chemical biology, generation of lead compounds for drug discovery, drug optimization for preclinical evaluation and, ultimately, development of new-targeted cancer therapeutics. 
 
The DDSB is capable of synthesizing all structural classes from small to large organic molecules including air- and light-sensitive materials. The synthetic component of the DDSB works closely with the new Chemical GMP Synthesis Facilities in developing good manufacturing practice synthesis processes for investigational new drug submissions. The other significant aspect of the DDSB lies in the structural characterization of drug-protein complexes by X-ray crystallography and other biophysical techniques such as surface plasmon resonance, isothermal titration calorimetry, and analytical ultracentrifugation. This unique transdisciplinary core enables development of new molecularly-targeted compounds for chemical biology studies and cancer therapies to enhance our translational research mission of the City of Hope Comprehensive Cancer Center. The goal of developing targeted molecular cancer therapeutics within various research programs of the cancer center is greatly facilitated through the newly-expanded, integrated DDSB facility.
 
Any subcomponent of the DDSB can be utilized on a stand-alone basis for a specific application.  Please contact the co-directors or managers at the links below for more information on usage, pricing and availability.
 
David Horne, Ph.D.
Co-director
626-256-4673, ext. 67310
dhorne@coh.org
 
John C. Williams, Ph.D.
Co-director
626-256-HOPE (4673), ext. 60227
jwilliams@coh.org

Drug Discovery and Structural Biology (DDSB) Core

Drug Discovery and Structural Biology (DDSB) Core

A primary goal of City of Hope's Comprehensive Cancer Center and its research programs is to develop new, more effective and less toxic therapies for the treatment of cancer. The Drug Discovery and Structural Biology (DDSB) Core was established to provide the necessary technical and scientific resource to facilitate drug discovery efforts consistent with the cancer center’s translational research goals. An important focus of the DDSB is on cancer drug discovery in the area of molecular-targeted therapeutics, as well as chemical biology probes. The core was established with these goals in mind and therefore is highly diverse in its services, yet highly convergent in its efforts.  The core comprises four major service components: high throughput screening, biopolymer synthesis, small molecule synthesis and X-ray crystallography. These disciplines work together in a complementary and cohesive manner to provide a full array of early-phase drug discovery services and chemical probes for biological systems. 
 
For example, the high throughput screening component of the DDSB provides unique opportunities for discovering small-molecule inhibitors of targeted proteins. Next, lead compounds can be elaborated through medicinal chemistry and structure activity relationship studies.  Once a good lead compound is developed, X-ray crystallographic analysis of the drug-protein complex begins. This is an essential component of any drug development process, since a detailed structural analysis is critical to understanding the drug-protein interaction and facilitates the optimization of ligand binding by molecular design. The general capabilities of the DDSB are significant and include the design and synthesis of highly specialized biopolymers, including siRNA-aptamers, DNA-peptide hybrid derivatives and peptides >100 amino acids in length.  In addition, the core maintains expertise in synthetic organic chemistry and is capable of complex molecule synthesis as well as the synthesis of small-molecule agonists and antagonists, imaging agents, affinity ligands, nanoparticles and focused combinatorial libraries. These compounds are used for mechanistic studies in chemical biology, generation of lead compounds for drug discovery, drug optimization for preclinical evaluation and, ultimately, development of new-targeted cancer therapeutics. 
 
The DDSB is capable of synthesizing all structural classes from small to large organic molecules including air- and light-sensitive materials. The synthetic component of the DDSB works closely with the new Chemical GMP Synthesis Facilities in developing good manufacturing practice synthesis processes for investigational new drug submissions. The other significant aspect of the DDSB lies in the structural characterization of drug-protein complexes by X-ray crystallography and other biophysical techniques such as surface plasmon resonance, isothermal titration calorimetry, and analytical ultracentrifugation. This unique transdisciplinary core enables development of new molecularly-targeted compounds for chemical biology studies and cancer therapies to enhance our translational research mission of the City of Hope Comprehensive Cancer Center. The goal of developing targeted molecular cancer therapeutics within various research programs of the cancer center is greatly facilitated through the newly-expanded, integrated DDSB facility.
 
Any subcomponent of the DDSB can be utilized on a stand-alone basis for a specific application.  Please contact the co-directors or managers at the links below for more information on usage, pricing and availability.
 
David Horne, Ph.D.
Co-director
626-256-4673, ext. 67310
dhorne@coh.org
 
John C. Williams, Ph.D.
Co-director
626-256-HOPE (4673), ext. 60227
jwilliams@coh.org
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Recognized nationwide for its innovative biomedical research, City of Hope's Beckman Research Institute is home to some of the most tenacious and creative minds in science.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
Media Inquiries/Social Media
 
CONNECT WITH US
Facebook  Twitter  YouTube  Blog
 


NEWS & UPDATES
  • The physical side effects of cancer can damage anyone’s self-confidence, but especially that of women who, rightly or wrongly, are more likely to find their appearance (or their own perception of their appearance) directly connected to their ability to face the world with something resembling aplomb. Furt...
  • The promise of stem cell therapy has long been studied in laboratories. Now, as medicine enters an era in which this therapy will be increasingly available to patients, the nurses who help deliver it will be in the spotlight. City of Hope, which has launched its Alpha Clinic for Cell Therapy and Innovation (ACT...
  • Just because you can treat a condition, such as high cholesterol, at the end of life — well, that doesn’t mean you should. That’s the basic lesson of a study to be published March 30 in JAMA Internal Medicine. The ramifications go far beyond that. The research, in which City of Hope’s Betty Fe...
  • The understanding of the relationship between genetics and cancer risk continues to grow, with more genetic testing than ever before available to patients. However, the adage that a little knowledge is a dangerous thing is applicable: Without context for what a test result means, and without meaningful guidance...
  • Standard prostate biopsies haven’t changed significantly in the past 30 years – nor have the problems inherent with them. Regular biopsies have an expected error rate: Tumors may potentially be undersampled and, 30 percent of the time, men who undergo a radical prostatectomy are found to have more aggress...
  • In the field of cancer, patients have had surgery, chemotherapy and radiation therapy as options. Now, as City of Hope officially opens the Alpha Clinic for Cellular Therapy and Innovation, patients battling cancer and other life-threatening diseases have another option: stem-cell-based therapy. The Alpha Clini...
  • How does the environment affect our health? Specifically, how does it affect our risk of cancer? City of Hope physicians and researchers recently answered those questions in an Ask the Experts event in Corona, California, explaining the underlying facts about how the environment can affect our health. Moderator...
  • Nurses and other medical professionals have come to understand that it’s not enough just to fight disease. They also must provide pain relief, symptom control, and an unrelenting commitment to improve patients’ quality of life — especially at the end of life. Not too long ago, this was a relatively ...
  • “Tonight, I’m launching a new precision medicine initiative to bring us closer to curing diseases like cancer.” These were the words of President Barack Obama on Jan. 20, 2015, during his State of the Union address. So what is precision medicine, and how close are we to making it a reality for...
  • March is Colon Cancer Awareness Month. How sad, yet how serendipitous, that the co-creator of “The Simpsons” Sam Simon passed away in March after a four-year battle against colon cancer. What message can we all learn from his illness that can help us prevent and overcome colon cancer in our own lives? Colon can...
  • Misagh Karimi, M.D., assistant clinical professor, is a medical oncologist at one of City of Hope’s newest community practice locations, located in Corona in Riverside County. A recent community health report from Corona’s public health department stated that obesity rates for teens and adults in Riverside Coun...
  • In 1975, the median survival for patients with ovarian cancer was about 12 months. Today, the median survival is more than 5 years. Although researchers and clinicians are far from satisfied, the progress in ovarian cancer treatment is encouraging, said Robert Morgan, M.D., F.A.C.P., professor of medical oncolo...
  • Colorectal cancer may be one of the most common cancers in both men and women, but it’s also one of the most curable cancers. Today, because of effective screening tests and more advanced treatment options, there are more than 1 million survivors of colorectal cancer in the United States. Here, colorectal...
  • Breast cancer treatment can damage a woman’s ability to become pregnant, making the impact on fertility one of the key factors that many consider when choosing a therapy regimen. Now a study has found that breast cancer patients treated with a hormone-blocking drug in addition to chemotherapy were less li...
  • My colleagues in the clinic know I’ve got a soft spot. Last week, a patient of mine offered me a fantastic compliment. “You’re looking younger these days, Dr. Pal!” she said, offering me a big hug as she proceeded out of the clinic room. Lovely, I thought. The early morning workouts are paying off. She continue...