A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Jovanovic-Talisman, Tijana Ph.D. Bookmark and Share

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 

Jovanovic-Talisman, Tijana Ph.D.

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Although chemotherapy can be effective in treating cancer, it can also exact a heavy toll on a patient’s health. One impressive alternative researchers have found is in the form of a vaccine. A type of immunotherapy, one part of the vaccine primes the body to react strongly against a tumor; the second part dire...
  • The breast cancer statistic is attention-getting: One in eight women will be diagnosed with breast cancer during her lifetime. That doesn’t mean that, if you’re one of eight women at a dinner table, one of you is fated to have breast cancer (read more on that breast cancer statistic), but it does mean that the ...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. In his first post, ...
  • Advanced age tops the list among breast cancer risk factor for women. Not far behind is family history and genetics. Two City of Hope researchers delving deep into these issues recently received important grants to advance their studies. Arti Hurria, M.D., director of the Cancer and Aging Research Program, and ...
  • City of Hope is extending the reach of its lifesaving mission well beyond U.S. borders. To that end, three distinguished City of Hope leaders visited China earlier this year to lay the foundation for the institution’s new International Medicine Program. The program is part of City of Hope’s strategi...
  • A hallmark of cancer is that it doesn’t always limit itself to a primary location. It spreads. Breast cancer and lung cancer in particular are prone to spread, or metastasize, to the brain. Often the brain metastasis isn’t discovered until years after the initial diagnosis, just when patients were beginning to ...
  • Blueberries, cinnamon, baikal scullcap, grape seed extract (and grape skin extract), mushrooms, barberry, pomegranates … all contain compounds with the potential to treat, or prevent, cancer. Scientists at City of Hope have found tantalizing evidence of this potential and are determined to explore it to t...
  • Most women who are treated for breast cancer with a mastectomy do not choose to undergo reconstructive surgery. The reasons for this, according to a recent JAMA Surgery study, vary. Nearly half say they do not want any additional surgery, while nearly 34 percent say breast cancer reconstruction simply isn’t imp...
  • The leading risk factor for breast cancer is simply being a woman. The second top risk factor is getting older. Obviously, these two factors cannot be controlled, which is why all women should be aware of their risk and how to minimize those risks. Many risk factors can be mitigated, and simple changes can lead...
  • All women are at some risk of developing the disease in their lifetimes, but breast cancer, like other cancers, has a disproportionate effect on minorities. Although white women have the highest incidence of breast cancer, African-American women have the highest breast cancer death rates of all racial and ethni...
  • First, the good news: HIV infections have dropped dramatically over the past 30 years. Doctors, researchers and health officials have made great strides in preventing and treating the disease, turning what was once a death sentence into, for some, a chronic condition. Now, the reality check: HIV is still a worl...
  • Screening for breast cancer has dramatically increased the number of cancers found before they cause symptoms – catching the disease when it is most treatable and curable. Mammograms, however, are not infallible. It’s important to conduct self-exams, and know the signs and symptoms that should be checked by a h...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free.   In his previ...
  • In a single day, former professional triathlete Lisa Birk learned she couldn’t have children and that she had breast cancer. “Where do you go from there?” she asks. For Birk, who swims three miles, runs 10 miles and cycles every day, the answer  ultimately was a decision to take control of her cancer care. Afte...
  • More and more people are surviving cancer, thanks to advanced cancer treatments and screening tools. Today there are nearly 14.5 million cancer survivors in the United States. But in up to 20 percent of cancer patients, the disease ultimately spreads to their brain. Each year, nearly 170,000 new cases of brain ...