A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Jovanovic-Talisman, Tijana Ph.D. Bookmark and Share

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 

Jovanovic-Talisman, Tijana Ph.D.

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Non-Hodgkin lymphoma facts: Non-Hodgkin lymphoma is a cancer that starts in cells called lymphocytes, which are part of the body’s immune system. Lymphocytes are in the lymph nodes and other lymphoid tissues (such as the spleen and bone marrow). Non-Hodgkin lymphoma is one of the most common cancers in the U.S....
  • Few clinical cancer trials include older adults – and yet, more than 60 percent of cancer cases in the United States occur in people age 65 and older. The result is a dearth of knowledge on how to treat the very population most likely to be diagnosed with cancer. Now, the American Society of Clinical […]
  • Scientists at City of Hope and UCLA have become the first to inhibit the expression of a protein, called TWIST that promotes tumor invasion and metastasis when activated by cancer cells. As such, they’ve taken the first step in developing a potential new therapy for some of the deadliest cancers, including ovar...
  • Upon completing her final round of chemotherapy for ovarian cancer earlier this month, Maria Velazquez-McIntyre, a 51-year-old Antelope Valley resident, celebrated the milestone by giving other patients a symbol of hope – a Survivor Bell. The bell may look ordinary, but for cancer patients undergoing chemothera...
  • Many Americans understand that obesity is tied to heart disease and diabetes but, according to a new survey, too few – only 7 percent – know that obesity increases the risk of cancer. Specific biological characteristics can increase cancer risk in obese people, and multiple studies have shown correlations betwe...
  • As breast cancer survivors know, the disease’s impact lingers in ways both big and small long after treatment has ended. A new study suggests that weight gain – and a possible corresponding increase in heart disease and diabetes risk – may be part of that impact. In the first study to evaluate weight chan...
  • Becoming what’s known as an independent scientific researcher is no small task, especially when working to translate research into meaningful health outcomes. Yet that independent status is vital, enabling researchers to lead studies and avenues of inquiry that they believe to be promising. Clinicians, especial...
  • 720 days. That’s how long Alex Tung, 38, had to give up surfing after being diagnosed with acute myeloid leukemia. For most people, even some surfers, such a hiatus wouldn’t be a big deal, but for Tung, surfing has been everything. The Southern California resident began surfing when he was in elemen...
  • There are few among us who have not experienced loss of a friend or loved one, often without warning, or like those of us who care for people with cancer, after a lingering illness. It is a time when emotions run high and deep, and as time passes from the moment of loss, we often […]
  • For the past four years, neurosurgeon and scientist Rahul Jandial, M.D., Ph.D., has been studying how breast cancer cells spread, or metastasize, to the brain, where they become life-threatening tumors. Known as secondary brain tumors, these cancers have become increasingly common as treatment advances have ena...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. A primary symptom is a rash that arises initially in areas of the skin that are not normally exposed to sunlight....
  • There’s science camp, and then there’s “mystery” science camp. City of Hope’s new science camp for middle school students is of the especially engaging latter variety. From Monday, July 13, to Friday, July 17, rising middle-school students from across the San Gabriel Valley were presented with a “patient” with ...
  • Women diagnosed with breast cancer quickly learn their tumor’s type, meaning the characteristics that fuel its growth. That label guides the treatment of their disease, as well as their prognosis when it comes to treatment effectiveness. Sometimes, however, doctors can’t accurately predict treatment effectivene...
  • In years past, Bladder Cancer Awareness Month has been a sobering reminder of a disease with few treatment options. For patients with metastatic disease (disease that has spread from the bladder to distant organs), average survival is typically just over one year. Fortunately, things are changing. Academic inst...
  • Tina Wang was diagnosed with Stage 4 diffuse large b cell lymphoma at age 22. She first sought treatment at her local hospital, undergoing two cycles of treatment. When the treatment failed to eradicate her cancer, she came to City of Hope. Here, Wang underwent an autologous stem cell transplant and participate...