A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Jovanovic-Talisman, Tijana Ph.D. Bookmark and Share

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 

Jovanovic-Talisman, Tijana Ph.D.

Jovanovic-Talisman, Tijana Ph.D.

My research brings together biology, chemistry and physics to provide a quantitative description of protein interactions. Pointillistic super-resolution imaging techniques can be used to elucidate nano-scale spatial organization of proteins and investigate biological processes that are critical to the progression of cancer and other human diseases. To advance drug discovery, we use Photoactivated Localization Microscopy with pair-correlation analysis (PC-PALM), a quantitative fluorescence imaging method with high spatial resolution and single-molecule sensitivity. This technique allows us to obtain information about a wide range of spatial scales from approximately 10 nm to 1 mm, along which many remodeling events take place. Our research interests lie in the advancement of quantitative nano-scale methods to study important biological mechanisms and in the development of novel therapeutic and imaging agents with these powerful techniques.
 
1. Pointillistic Microscopy: Investigation of Protein Signaling
Elucidation of protein organization in the plasma membrane will clarify the mechanisms of signaling networks that regulate cellular function and communication. Quantitative super-resolution microscopy techniques are used in our lab to investigate the distribution of plasma membrane receptors such as growth factor receptors and G protein-coupled receptors (GPCRs) in the steady state and upon perturbation with various ligands. Monoclonal antibodies (mAbs) are the focus of both basic research and translational medicine due to their exquisite specificity and high affinity. We have an ongoing collaboration with Professors Williams, Horne and Park at City of Hope to arm antibodies to detect disease, treat disease, and elucidate the basic biology of antigen signaling. Over the long-term we envision that advanced super-resolution microscopy methods such as PC-PALM can be used as a tool for quantitative, high-throughput screening of ligands and their receptors on the cell membrane to develop novel cancer therapeutics that are specific to the disease site.
 
2. Nano-scale Investigation of the Nuclear Pore Complex machinery
Proteinaceous assemblies called nuclear pore complexes (NPCs) mediate transport of macromolecules across the nuclear envelope. NPCs are selective for the passage of certain molecules, yet provide high throughput in order to maintain proper cellular order and function.

Individual nucleoporins have unique roles in regulation of nucleocytoplasmic transport, and their defects can often lead to various disease phenotypes including cancer. We aim to elucidate the mechanistic contributions of the specific nucleoporins during both normal cell function and carcinogenesis by utilizing and developing nano-biological assays and biophysical tools such as super-resolution microscopy. In addition, we are interested in exploring the effect of potential anticancer agents on the NPC machinery. Mechanisms that regulate nucleocytoplasmic transport of proteins may ultimately provide novel targets and opportunities for drug development.
 
Lab Members
Eliedonna Cacao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 65598
ecacao@coh.org

Steven Tobin
Graduate student
626-256-HOPE (4673), ext. 65598
stobin@coh.org
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...
  • They may not talk about it, but women with cancers in the pelvic region, such as cervical cancer, bladder cancer and uterine cancer, often have problems controlling their urine, bowel or flatus. Although they may feel isolated, they’re far from alone. Many other women have such problems, too. In fact, nea...
  • Cancer that spreads to the liver poses a significant threat to patients, and a great challenge to surgeons. The organ’s anatomical complexity and its maze of blood vessels make removal of tumors difficult, even for specialized liver cancer surgeons. Following chemotherapy, the livers of cancer patients are not ...