A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Kong, Mei, Ph.D. Bookmark and Share

Laboratory of Mei Kong, Ph.D.

Signal transduction and Cancer Metabolism
Tumor cells often display fundamental changes in metabolism and increase their uptake of nutrients to meet the increased bioenergetic demands of proliferation.  Glucose and glutamine are two main nutrients whose uptake is directly controlled by signal transduction and are essential for tumor cell survival and proliferation.  Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen.   In addition to glucose, glutamine is another essential nutrient whose uptake is directly controlled by oncogenes, and it is critical for cancer cell survival and proliferation.  During tumor growth, increased uptake of nutrients and rapid accumulation of cells can outstrip the supply of essential nutrients, including glucose and glutamine.  How tumor cells survive these temporary periods of nutrient deprivation is unclear, but is necessary for tumorigenesis to persist.  The major goal of our laboratory is to delineate the strategies used by tumor cells to survive periods of nutrient deprivation and then to develop novel therapies targeting nutrient-sensing pathways of neoplastic cells.  Exciting progress has been made over the past 20 years in elucidating how cancer cells survive glucose deprivation via mTOR, AMPK and p53 pathway.  In contrast, less is known about the signal transduction pathways that regulate tumor cells’ survival during glutamine deprivation, in spite of the evidence that has been noticed for many years, that glutamine fell from a high level in normal tissue to a level not detectable in different solid tumors.  Thus, identifying the critical regulators that control tumor cell survival during glutamine deprivation may lead to the development of novel and safer cancer therapies.  We recently discovered that protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. In future work, we will focus on understanding how p53 activation regulates tumor cell survival under glutamine deprivation, and identify critical p53 targets that contribute to cancer cell survival under glutamine limitation.  Our long-term goal is to identify the signals that allow communication between oncogenic pathways and tumor cell metabolism and develop novel therapeutics targeting metabolic differences between rapidly-proliferating cancer cells and normal cells.
 
Regulation of Protein Phosphatase 2A Complexes
Reversible protein phosphorylation is the major regulatory mechanism used by cells to respond to environmental and nutritional stresses.  Aberrant regulation of this activity leads to dysregulated cellular behavior and disease phenotypes, including many forms of cancer. Although we know much about how protein kinases function in specific signaling governed by phosphorylation, whether protein phosphatases are also regulated and actively function in the process to counteract kinase function has not been established. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many signaling pathways. Unlike kinases, serine/threonine phosphatases are promiscuously active and their specificity is governed largely by associated proteins. Thus, the specificity of PP2A is conferred by assembly of a trimeric complex including a catalytic C subunit, a scaffolding A subunit, and one of the sixteen regulatory B subunits. In addition to interacting with conventional A and B subunits, the C subunit reportedly forms two other distinct complexes with proteins designated α4 (Tap42 in yeast) and Tiprl (Tip41 in yeast).  Our laboratory also interested in characterizing molecular mechanisms underlying the response of PP2A complexes to stress signals.
 
For more information on Dr. Kong, please click here.

Mei Kong, Ph.D. Lab Members

Lab Members
 
Jenny Davies, Ph.D
Postdoctoral Fellow
626-256-4673, ext.30158
jedavies@coh.org
 
Min Pan, Ph.D.
Postdoctoral Fellow
626-256-4673 ext.  30158
minoan@coh.org

Michael Reid, B.S.
Graduate Student
626-256-4673, ext. 30158
mrieda@coh.org
 
Kimberly Rosales, Ph.D.
Postdoctoral Fellow
626-256-4673, ext. 30158
krosales@coh.org
 
Xazmin Lowman, Ph.D
Postdoctoral Fellow
626-256-4673, ext. 64450
 

Kong, Mei, Ph.D.

Laboratory of Mei Kong, Ph.D.

Signal transduction and Cancer Metabolism
Tumor cells often display fundamental changes in metabolism and increase their uptake of nutrients to meet the increased bioenergetic demands of proliferation.  Glucose and glutamine are two main nutrients whose uptake is directly controlled by signal transduction and are essential for tumor cell survival and proliferation.  Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen.   In addition to glucose, glutamine is another essential nutrient whose uptake is directly controlled by oncogenes, and it is critical for cancer cell survival and proliferation.  During tumor growth, increased uptake of nutrients and rapid accumulation of cells can outstrip the supply of essential nutrients, including glucose and glutamine.  How tumor cells survive these temporary periods of nutrient deprivation is unclear, but is necessary for tumorigenesis to persist.  The major goal of our laboratory is to delineate the strategies used by tumor cells to survive periods of nutrient deprivation and then to develop novel therapies targeting nutrient-sensing pathways of neoplastic cells.  Exciting progress has been made over the past 20 years in elucidating how cancer cells survive glucose deprivation via mTOR, AMPK and p53 pathway.  In contrast, less is known about the signal transduction pathways that regulate tumor cells’ survival during glutamine deprivation, in spite of the evidence that has been noticed for many years, that glutamine fell from a high level in normal tissue to a level not detectable in different solid tumors.  Thus, identifying the critical regulators that control tumor cell survival during glutamine deprivation may lead to the development of novel and safer cancer therapies.  We recently discovered that protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. In future work, we will focus on understanding how p53 activation regulates tumor cell survival under glutamine deprivation, and identify critical p53 targets that contribute to cancer cell survival under glutamine limitation.  Our long-term goal is to identify the signals that allow communication between oncogenic pathways and tumor cell metabolism and develop novel therapeutics targeting metabolic differences between rapidly-proliferating cancer cells and normal cells.
 
Regulation of Protein Phosphatase 2A Complexes
Reversible protein phosphorylation is the major regulatory mechanism used by cells to respond to environmental and nutritional stresses.  Aberrant regulation of this activity leads to dysregulated cellular behavior and disease phenotypes, including many forms of cancer. Although we know much about how protein kinases function in specific signaling governed by phosphorylation, whether protein phosphatases are also regulated and actively function in the process to counteract kinase function has not been established. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many signaling pathways. Unlike kinases, serine/threonine phosphatases are promiscuously active and their specificity is governed largely by associated proteins. Thus, the specificity of PP2A is conferred by assembly of a trimeric complex including a catalytic C subunit, a scaffolding A subunit, and one of the sixteen regulatory B subunits. In addition to interacting with conventional A and B subunits, the C subunit reportedly forms two other distinct complexes with proteins designated α4 (Tap42 in yeast) and Tiprl (Tip41 in yeast).  Our laboratory also interested in characterizing molecular mechanisms underlying the response of PP2A complexes to stress signals.
 
For more information on Dr. Kong, please click here.

Laboratory Members

Mei Kong, Ph.D. Lab Members

Lab Members
 
Jenny Davies, Ph.D
Postdoctoral Fellow
626-256-4673, ext.30158
jedavies@coh.org
 
Min Pan, Ph.D.
Postdoctoral Fellow
626-256-4673 ext.  30158
minoan@coh.org

Michael Reid, B.S.
Graduate Student
626-256-4673, ext. 30158
mrieda@coh.org
 
Kimberly Rosales, Ph.D.
Postdoctoral Fellow
626-256-4673, ext. 30158
krosales@coh.org
 
Xazmin Lowman, Ph.D
Postdoctoral Fellow
626-256-4673, ext. 64450
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Gliomas, a type of tumor that grows in the brain, are very difficult to treat successfully due to their complex nature. That might not always be the case. First some background: The most aggressive and common type of primary brain tumor in adults is glioblastoma. Although the brain tumor mass can often be remov...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. The result is rashes and, sometimes, tumors, which can be mistaken for other dermatological conditions. In a smal...
  • Weighing your breast cancer risk? One study suggests a measure to consider is skirt size. A British study suggests that for each increase in skirt size every 10 years after age 25, the five-year risk of developing breast cancer postmenopause increases from one in 61 to one in 51 – a 77 percent increase in risk....
  • Runners prize medals for 5Ks and marathons. Becky Stokes has a medal she cherishes from a very different kind of race: the marathon of treatments necessary to beat her aggressive triple-negative breast cancer. Just a week ago, she completed her last radiation treatment, and danced in the hospital with the staff...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. Darakjian’s s...
  • The environment plays a role in causing cancer – this much we know. But scientists are still trying to understand what that role is, what environmental factors are in play and how precisely those factors are linked to cancer. Now City of Hope researchers have unlocked a clue as to how one carcinogen triggers ca...
  • Jonathan Yamzon, M.D., assistant clinical professor of surgery in the Division of Urology and Urologic Oncology, explains his approach to what’s known as “active surveillance” of men with prostate cancer. Patients need to be educated about their treatment options, he writes. Active surveillanc...
  • For most prostate cancer patients, surgery or radiation therapy is the initial and primary treatment against the disease. But some patients can benefit from chemotherapy and hormone therapy too, especially if there are signs of a relapse or if the cancer has spread beyond the prostate gland. Here, Cy Stein, M.D...
  • Cancer research has yielded scientific breakthroughs that offer patients more options, more hope for survival and a higher quality of life than ever before. The 14.5 million cancer patients living in the United States are living proof that cancer research saves lives. Now, in addition to the clinic, hospital an...
  • Advances in cancer treatment, built on discoveries made in the laboratory then brought to the bedside, have phenomenally changed the reality of living with a cancer diagnosis. More than any other time in history, people diagnosed with cancer are more likely to survive and to enjoy a high quality of life. Howeve...
  • While health care reform has led to an increase in the number of people signing up for health insurance, many people remain uninsured or are not taking full advantage of the health benefits they now have. Still others are finding that, although their premiums are affordable, they aren’t able to see the do...
  • Kidney cancer rates and thyroid cancer rates in adults have continued to rise year after year. Now a new study has found that incidence rates for these cancers are also increasing in children — particularly in African-American children. The study, published online this month in Pediatrics, examined childhood ca...
  • Thyroid cancer has become one of the fastest-growing cancers in the United States for both men and women. The chance of being diagnosed with the cancer has nearly doubled since 1990. This year an estimated 63,000 people will be diagnosed with thyroid cancer in the United States and nearly 1,900 people will die ...
  • Older teenagers and young adults traditionally face worse outcomes than younger children when diagnosed with brain cancer and other central nervous system tumors. A first-of-its-kind study shows why. A team of researchers from the departments of Population Sciences and Pathology at City of Hope recently examine...
  • Cancer treatment can take a toll on the mouth, even if a patient’s cancer has nothing to do with the head or throat, leading to a dry mouth, or a very sore mouth, and making it difficult to swallow or eat. Here’s some advice from the National Cancer Institute (NCI)  on how to ease cancer-related dis...