A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Kong, Mei, Ph.D. Bookmark and Share

Laboratory of Mei Kong, Ph.D.

Signal transduction and Cancer Metabolism
Tumor cells often display fundamental changes in metabolism and increase their uptake of nutrients to meet the increased bioenergetic demands of proliferation.  Glucose and glutamine are two main nutrients whose uptake is directly controlled by signal transduction and are essential for tumor cell survival and proliferation.  Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen.   In addition to glucose, glutamine is another essential nutrient whose uptake is directly controlled by oncogenes, and it is critical for cancer cell survival and proliferation.  During tumor growth, increased uptake of nutrients and rapid accumulation of cells can outstrip the supply of essential nutrients, including glucose and glutamine.  How tumor cells survive these temporary periods of nutrient deprivation is unclear, but is necessary for tumorigenesis to persist.  The major goal of our laboratory is to delineate the strategies used by tumor cells to survive periods of nutrient deprivation and then to develop novel therapies targeting nutrient-sensing pathways of neoplastic cells.  Exciting progress has been made over the past 20 years in elucidating how cancer cells survive glucose deprivation via mTOR, AMPK and p53 pathway.  In contrast, less is known about the signal transduction pathways that regulate tumor cells’ survival during glutamine deprivation, in spite of the evidence that has been noticed for many years, that glutamine fell from a high level in normal tissue to a level not detectable in different solid tumors.  Thus, identifying the critical regulators that control tumor cell survival during glutamine deprivation may lead to the development of novel and safer cancer therapies.  We recently discovered that protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. In future work, we will focus on understanding how p53 activation regulates tumor cell survival under glutamine deprivation, and identify critical p53 targets that contribute to cancer cell survival under glutamine limitation.  Our long-term goal is to identify the signals that allow communication between oncogenic pathways and tumor cell metabolism and develop novel therapeutics targeting metabolic differences between rapidly-proliferating cancer cells and normal cells.
 
Regulation of Protein Phosphatase 2A Complexes
Reversible protein phosphorylation is the major regulatory mechanism used by cells to respond to environmental and nutritional stresses.  Aberrant regulation of this activity leads to dysregulated cellular behavior and disease phenotypes, including many forms of cancer. Although we know much about how protein kinases function in specific signaling governed by phosphorylation, whether protein phosphatases are also regulated and actively function in the process to counteract kinase function has not been established. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many signaling pathways. Unlike kinases, serine/threonine phosphatases are promiscuously active and their specificity is governed largely by associated proteins. Thus, the specificity of PP2A is conferred by assembly of a trimeric complex including a catalytic C subunit, a scaffolding A subunit, and one of the sixteen regulatory B subunits. In addition to interacting with conventional A and B subunits, the C subunit reportedly forms two other distinct complexes with proteins designated α4 (Tap42 in yeast) and Tiprl (Tip41 in yeast).  Our laboratory also interested in characterizing molecular mechanisms underlying the response of PP2A complexes to stress signals.
 
For more information on Dr. Kong, please click here.

Mei Kong, Ph.D. Lab Members

Lab Members
 
Jenny Davies, Ph.D
Postdoctoral Fellow
626-256-4673, ext.30158
jedavies@coh.org
 
Min Pan, Ph.D.
Postdoctoral Fellow
626-256-4673 ext.  30158
minoan@coh.org

Michael Reid, B.S.
Graduate Student
626-256-4673, ext. 30158
mrieda@coh.org
 
Kimberly Rosales, Ph.D.
Postdoctoral Fellow
626-256-4673, ext. 30158
krosales@coh.org
 
Xazmin Lowman, Ph.D
Postdoctoral Fellow
626-256-4673, ext. 64450
 

Kong, Mei, Ph.D.

Laboratory of Mei Kong, Ph.D.

Signal transduction and Cancer Metabolism
Tumor cells often display fundamental changes in metabolism and increase their uptake of nutrients to meet the increased bioenergetic demands of proliferation.  Glucose and glutamine are two main nutrients whose uptake is directly controlled by signal transduction and are essential for tumor cell survival and proliferation.  Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen.   In addition to glucose, glutamine is another essential nutrient whose uptake is directly controlled by oncogenes, and it is critical for cancer cell survival and proliferation.  During tumor growth, increased uptake of nutrients and rapid accumulation of cells can outstrip the supply of essential nutrients, including glucose and glutamine.  How tumor cells survive these temporary periods of nutrient deprivation is unclear, but is necessary for tumorigenesis to persist.  The major goal of our laboratory is to delineate the strategies used by tumor cells to survive periods of nutrient deprivation and then to develop novel therapies targeting nutrient-sensing pathways of neoplastic cells.  Exciting progress has been made over the past 20 years in elucidating how cancer cells survive glucose deprivation via mTOR, AMPK and p53 pathway.  In contrast, less is known about the signal transduction pathways that regulate tumor cells’ survival during glutamine deprivation, in spite of the evidence that has been noticed for many years, that glutamine fell from a high level in normal tissue to a level not detectable in different solid tumors.  Thus, identifying the critical regulators that control tumor cell survival during glutamine deprivation may lead to the development of novel and safer cancer therapies.  We recently discovered that protein phosphatase 2A (PP2A)-associated protein, α4, plays a conserved role in glutamine sensing. α4 promotes assembly of an adaptive PP2A complex containing the B55α regulatory subunit via providing the catalytic subunit upon glutamine deprivation. Moreover, B55α is specifically induced upon glutamine deprivation in a ROS-dependent manner to activate p53 and promote cell survival. B55α activates p53 through direct interaction and dephosphorylation of EDD, a negative regulator of p53. Importantly, the B55α-EDD-p53 pathway is essential for cancer cell survival and tumor growth under low glutamine conditions in vitro and in vivo. In future work, we will focus on understanding how p53 activation regulates tumor cell survival under glutamine deprivation, and identify critical p53 targets that contribute to cancer cell survival under glutamine limitation.  Our long-term goal is to identify the signals that allow communication between oncogenic pathways and tumor cell metabolism and develop novel therapeutics targeting metabolic differences between rapidly-proliferating cancer cells and normal cells.
 
Regulation of Protein Phosphatase 2A Complexes
Reversible protein phosphorylation is the major regulatory mechanism used by cells to respond to environmental and nutritional stresses.  Aberrant regulation of this activity leads to dysregulated cellular behavior and disease phenotypes, including many forms of cancer. Although we know much about how protein kinases function in specific signaling governed by phosphorylation, whether protein phosphatases are also regulated and actively function in the process to counteract kinase function has not been established. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many signaling pathways. Unlike kinases, serine/threonine phosphatases are promiscuously active and their specificity is governed largely by associated proteins. Thus, the specificity of PP2A is conferred by assembly of a trimeric complex including a catalytic C subunit, a scaffolding A subunit, and one of the sixteen regulatory B subunits. In addition to interacting with conventional A and B subunits, the C subunit reportedly forms two other distinct complexes with proteins designated α4 (Tap42 in yeast) and Tiprl (Tip41 in yeast).  Our laboratory also interested in characterizing molecular mechanisms underlying the response of PP2A complexes to stress signals.
 
For more information on Dr. Kong, please click here.

Laboratory Members

Mei Kong, Ph.D. Lab Members

Lab Members
 
Jenny Davies, Ph.D
Postdoctoral Fellow
626-256-4673, ext.30158
jedavies@coh.org
 
Min Pan, Ph.D.
Postdoctoral Fellow
626-256-4673 ext.  30158
minoan@coh.org

Michael Reid, B.S.
Graduate Student
626-256-4673, ext. 30158
mrieda@coh.org
 
Kimberly Rosales, Ph.D.
Postdoctoral Fellow
626-256-4673, ext. 30158
krosales@coh.org
 
Xazmin Lowman, Ph.D
Postdoctoral Fellow
626-256-4673, ext. 64450
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • As far back as he can remember, Jonathan Yamzon, M.D., wanted to be a doctor. “I knew it from the get-go,” he said, matter-of-factly. “I always envisioned it as the ideal; the supreme thing one could do with one’s life.” The youngest of six children, Yamzon was barely a toddler when his family moved to [&...
  • There’s never a “good” time for cancer to strike. With testicular cancer, the timing can seem particularly unfair. This disease targets young adults in the prime of life; otherwise healthy people unaccustomed to any serious illness, let alone cancer. And suddenly … “I can only imagine what they must...
  • Sure, a healthy lifestyle can lower a person’s risk, but the impact of specific actions is harder to tease out. Diet, exercise, tobacco use, nutritional supplements, alcohol consumption … How important are each of these factors, individually? Does strict adherence to (or rejection of) one get you a pass o...
  • Health care decisions are tough. They’re even tougher when you – or loved ones – have to make them without a plan or a conversation. National Healthcare Decisions Day, on April 16,  is a nationwide initiative to demystify the health care decision-making process and encourage families to start talking. Ult...
  • The statistics, direct from the American Cancer Society, are sobering: Cancer death rates among African-American men are 27 percent higher than for white men. The death rate for African-American women is 11 percent higher compared to white women. Hispanics have higher rates of cervical, liver and stomach cancer...
  • “Lucky” is not usually a term used to describe someone diagnosed with cancer.  But that’s how 34-year-old Alex Camargo’s doctor described him when he was diagnosed with thyroid cancer — the disease is one of the most treatable cancers at all stages. That doctor was ultimately proved righ...
  • Geoff Berman, 61, starts his day with the motto: “The sun is up. I’m vertical. It’s a good day.” Ever since he’s been in remission from lymphoma, Berman makes a special point of being grateful for each day, reminding himself that being alive is a gift. “I just enjoy living,” he said. “I give e...
  • Neural stem cells have a natural ability to seek out cancer cells in the brain. Recent research from the laboratories of Michael Barish, Ph.D., and Karen Aboody, M.D., may offer a new explanation for this attraction between stem cells and tumors. Prior to joining City of Hope, Aboody, now a professor in the Dep...
  • The American Society of Clinical Oncology, a group that includes more than 40,000 cancer specialists around the country, recently issued a list of the five most profound cancer advances over the past five decades. Near the top of the list was the introduction of chemotherapy for testicular cancer. To many in th...
  • “The dying, as a group, have been horribly underserved.” So says Bonnie Freeman, R.N., D.N.P., A.N.P.-B.C., A.C.H.P.N., a nurse practitioner in the Department of Supportive Care Medicine at City of Hope. After nearly 25 years, primarily in critical care nursing, Freeman saw that the needs of the dying were ofte...
  • “Are we the only ones who feel this way?” Courtney Bitz, L.C.S.W., a social worker in the Sheri & Les Biller Patient and Family Resource Center at City of Hope, often hears this question from couples trying to cope with a breast cancer diagnosis and still keep their relationship strong. The ques...
  • Diabetes investigators at City of Hope are studying the full trajectory of diabetes and metabolic disorders, as well as complications of the disease. One especially promising approach focuses on proteins known as growth factors. Led by Fouad Kandeel, M.D., Ph.D., chair and professor of the Department of Clinica...
  • Acute myeloid leukemia is the most common form of acute leukemia among adults, accounting for 18,000 diagnoses in 2014. Two decades ago, in 1996, the National Comprehensive Cancer Network (NCCN) published its first guidelines for treatment of acute myeloid leukemia, or AML. Margaret O’Donnell, M.D., assoc...
  • Children diagnosed with cancer are more likely than ever before to survive the disease, but with a potential new set of health problems caused by the cancer treatment itself. Those problems can particularly affect the heart, and as doctors and other health care workers try to assess how best to care for this sp...
  • Karen Reckamp, M.D., M.S., has an office next to my own, and we often see patients at the same time. As such, I’ve gotten to know her quite well over the years, and I’ve also gotten a glimpse of many of her patients. She specializes in lung cancer, and most of her patients have tumors […]