A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Ku, Hsun Teresa, Ph.D. Research Bookmark and Share

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 

Ku, Hsun Teresa, Ph.D. Research

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

Lab Members

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 
Center for Biomedicine & Genetics
Our Center for Biomedicine & Genetics (CBG) manufactures promising new genetic and cellular agents created by researches for use inclinical trials. We are uniquely equipped to evaluate therapies swiftly and move lifesaving drugs into the marketplace with great speed.
City of Hope has been the home of many illustrious scientists, including six members of the prestigious National Academy of Sciences: Ernest Beutler, Alfred Knudson, Rachmiel Levine, Susumo Ohno, Eugene Roberts, and Arthur Riggs. Learn more about our current scientists and researchers.
Cytogenetics Office Location
City of Hope and Beckman Research Institute 1500 East Duarte Road Duarte, CA 91010-3000 Northwest Building
Room 2265

Phone: 626-256-HOPE (4673), ext. 62025
Fax: 626-301-8877

Biostatistics Office Location
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000

Information Sciences Building (#171)

Phone:  626-256-HOPE (4673), Ext. 61444
Fax:  626-471-7106
or 626-301-8802
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...
  • They may not talk about it, but women with cancers in the pelvic region, such as cervical cancer, bladder cancer and uterine cancer, often have problems controlling their urine, bowel or flatus. Although they may feel isolated, they’re far from alone. Many other women have such problems, too. In fact, nea...
  • Cancer that spreads to the liver poses a significant threat to patients, and a great challenge to surgeons. The organ’s anatomical complexity and its maze of blood vessels make removal of tumors difficult, even for specialized liver cancer surgeons. Following chemotherapy, the livers of cancer patients are not ...