A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Ku, Hsun Teresa, Ph.D. Research Bookmark and Share

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 

Ku, Hsun Teresa, Ph.D. Research

Hsun Teresa Ku, Ph.D. Research

Identification and Characterization of Pancreatic Stem Cells
A functional pancreas consists of two types of tissue: exocrine and endocrine. The exocrine tissue mainly consists of acinar cells, which secrete bicarbonate and digestive enzymes. These secretions are collected by the pancreatic ductal system, which begins with centroacinar cells that are directly in contact with acinar cells. The prolongation of the terminal ducts, or alveoli, are lined by centroacinar cells and gradually merge into a main duct that drains into the duodenum. The endocrine tissue is organized as islets and contains cells that secrete glucagon, insulin, somatostatin, pancreatic polypeptide or grehlin. These endocrine hormones are released directly into the blood stream in response to metabolic signals.
 
Recently, there has been an intense interest in identifying pancreatic stem or progenitor cells, especially the endocrine progenitor cells, for the purpose of replacement therapy of Type 1 diabetes (T1D), a disease in which the insulin-secreting beta cells are specifically destroyed by autoimmunity. However, the existence of self-renewing multipotential stem cells in the pancreas remains elusive. Our laboratory is interested in the identification and characterization of pancreatic stem/progenitor cells, using both mouse models and cadaverous human pancreatic tissues for studies. We have established a quantitative and clonogenic progenitor cell assay in our laboratory, which will be a powerful tool to study the cellular and molecular mechanisms that govern the differentiation and proliferation of the pancreatic stem/progenitor cells at the single cell level.
 
Embryonic Stem Cell Therapy for Type 1 Diabetes
T1D is marked by a deficiency of the insulin-secreting β cells residing in the Islets of Langerhans within the pancreas due to autoimmune destruction. One of the long-term goals of our laboratory is to advance clinical cell-replacement therapy for patients with sever forms of T1D by developing a safe, reliable and abundant source of cells, derived from human stem cells that function like pancreatic islets. Toward this end, we have established an efficient and potentially cost-effective differentiation protocol, originally adapted from a mouse embryonic stem cell (ESC) differentiation method previously established in our laboratory, and generated a population of glucose-responsive, insulin-producing and secreting cells derived from human ESCs while in vitro. This cell population will be a suitable development candidate for clinical cell replacement therapy for T1D at City of Hope in the future.
 
Embryonic Stem Cells as a Cellular Tool for Screening of Molecules for Treatment of Diabetes
In the small molecule drug discovery field, the “bottom-up” approach, which is based on structural considerations of known targets, has not been as fruitful as was once promised. ESC technology ffers a potential solution to this bottleneck. ESCs can be grown in large numbers and maintained in a pluripotent state in vitro. They can also be induced in culture to differentiate into cells from all three germ layers in a relatively normal fashion that is faithful to development in vivo. Three properties make ES cells an ideal platform for drug discovery: first, ES cells can provide virtually inexhaustible quantities of target cells, which is necessary for screening of large numbers of compounds; second, ES cells can differentiate into mature cells with phenotypes that mimic their counterparts in vivo; and third, compared with immortalized cell lines, ES cells and their derivatives will provide a much more accurate platform for the “top-down” drug screening approach. Our laboratory is interested in high throughput screening (HTS) of small molecules that may affect proliferation, differentiation and/or maturation of the pancreatic insulin-producing  β cells and their immediate progenitors. We have established a relatively simple and inexpensive differentiation protocol that allows efficient generation of the pancreatic like, insulin-expressing cells from murine ESCs. Thus, this ESC to pancreatic lineage differentiation assay will be valuable to serve as a cellular tool for screening large number of molecules that could be used to treat diabetes.
 
 
 

Lab Members

H. Teresa Ku, Ph.D. Lab Members

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
H. Teresa Ku, Ph.D.
Professor
626-256-HOPE (4673), ext. 61174
 
Jeanne LeBon, Ph.D.
Assistant Research Professor
626-256-HOPE (4673), ext. 63796
 
Dan Gao, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 62251
 
Liang Jin, Ph.D.
Postdoctoral Fellow
626-256-HOPE (4673), ext. 61449
 
Lena Wedeken, Ph.D.,
Postdoctoral Fellow and a CIRM Postdoctoral Scholar
626-256-HOPE (4673), ext. 33242
 
Stephanie Walker, B.S.
Research Associate I
626-256-HOPE (4673), ext. 31235
 
Nadiah Ghazalli, M.S.
Graduate Student and a CIRM Predoctoral Scholar
626-256-HOPE (4673), ext. 31235
 
Center for Biomedicine & Genetics
Our Center for Biomedicine & Genetics (CBG) manufactures promising new genetic and cellular agents created by researches for use inclinical trials. We are uniquely equipped to evaluate therapies swiftly and move lifesaving drugs into the marketplace with great speed.
City of Hope has been the home of many illustrious scientists, including six members of the prestigious National Academy of Sciences: Ernest Beutler, Alfred Knudson, Rachmiel Levine, Susumo Ohno, Eugene Roberts, and Arthur Riggs. Learn more about our current scientists and researchers.
Cytogenetics Office Location
City of Hope and Beckman Research Institute 1500 East Duarte Road Duarte, CA 91010-3000 Northwest Building
Room 2265

Phone: 626-256-HOPE (4673), ext. 62025
Fax: 626-301-8877

Biostatistics Office Location
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000

Information Sciences Building (#171)

Phone:  626-256-HOPE (4673), Ext. 61444
Fax:  626-471-7106
or 626-301-8802
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Upon completing her final round of chemotherapy for ovarian cancer earlier this month, Maria Velazquez-McIntyre, a 51-year-old Antelope Valley resident, celebrated the milestone by giving other patients a symbol of hope – a Survivor Bell. The bell may look ordinary, but for cancer patients undergoing chemothera...
  • Many Americans understand that obesity is tied to heart disease and diabetes but, according to a new survey, too few – only 7 percent – know that obesity increases the risk of cancer. Specific biological characteristics can increase cancer risk in obese people, and multiple studies have shown correlations betwe...
  • As breast cancer survivors know, the disease’s impact lingers in ways both big and small long after treatment has ended. A new study suggests that weight gain – and a possible corresponding increase in heart disease and diabetes risk – may be part of that impact. In the first study to evaluate weight chan...
  • Becoming what’s known as an independent scientific researcher is no small task, especially when working to translate research into meaningful health outcomes. Yet that independent status is vital, enabling researchers to lead studies and avenues of inquiry that they believe to be promising. Clinicians, especial...
  • 720 days. That’s how long Alex Tung, 38, had to give up surfing after being diagnosed with acute myeloid leukemia. For most people, even some surfers, such a hiatus wouldn’t be a big deal, but for Tung, surfing has been everything. The Southern California resident began surfing when he was in elemen...
  • There are few among us who have not experienced loss of a friend or loved one, often without warning, or like those of us who care for people with cancer, after a lingering illness. It is a time when emotions run high and deep, and as time passes from the moment of loss, we often […]
  • For the past four years, neurosurgeon and scientist Rahul Jandial, M.D., Ph.D., has been studying how breast cancer cells spread, or metastasize, to the brain, where they become life-threatening tumors. Known as secondary brain tumors, these cancers have become increasingly common as treatment advances have ena...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. A primary symptom is a rash that arises initially in areas of the skin that are not normally exposed to sunlight....
  • There’s science camp, and then there’s “mystery” science camp. City of Hope’s new science camp for middle school students is of the especially engaging latter variety. From Monday, July 13, to Friday, July 17, rising middle-school students from across the San Gabriel Valley were presented with a “patient” with ...
  • Women diagnosed with breast cancer quickly learn their tumor’s type, meaning the characteristics that fuel its growth. That label guides the treatment of their disease, as well as their prognosis when it comes to treatment effectiveness. Sometimes, however, doctors can’t accurately predict treatment effectivene...
  • In years past, Bladder Cancer Awareness Month has been a sobering reminder of a disease with few treatment options. For patients with metastatic disease (disease that has spread from the bladder to distant organs), average survival is typically just over one year. Fortunately, things are changing. Academic inst...
  • Tina Wang was diagnosed with Stage 4 diffuse large b cell lymphoma at age 22. She first sought treatment at her local hospital, undergoing two cycles of treatment. When the treatment failed to eradicate her cancer, she came to City of Hope. Here, Wang underwent an autologous stem cell transplant and participate...
  • When Gilbert Fresquez, 72, lost an excessive amount of weight in late 2012, he didn’t think much of it. He assumed it was a side effect from a recent surgery to remove a carcinoid tumor in his small intestine. It wasn’t until a couple of years later during a routine doctor’s visit that the retired […]
  • Bladder cancer is a disease in which malignant (cancer) cells form in the tissues of the bladder. Among both men and women, the rates of new cancers have decreased in recent years. Death rates, meanwhile, have declined among women and have held stable among men. Specialists at City of Hope are internationally r...
  • The transplant patient had been hospitalized for a couple of months. A professional violinist, he hadn’t touched his instrument for too long, ever since chemotherapy had caused his skin to peel and his fingers to go numb; they were too sensitive even to touch the metal strings, much less make them sing. He had ...