A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular Medicine Bookmark and Share

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
 
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Robert Hickey, Ph.D. - Molecular Medicine
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
 
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Robert Hickey, Ph.D. - Molecular Medicine
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 


NEWS & UPDATES
  • Non-Hodgkin lymphoma facts: Non-Hodgkin lymphoma is a cancer that starts in cells called lymphocytes, which are part of the body’s immune system. Lymphocytes are in the lymph nodes and other lymphoid tissues (such as the spleen and bone marrow). Non-Hodgkin lymphoma is one of the most common cancers in the U.S....
  • Few clinical cancer trials include older adults – and yet, more than 60 percent of cancer cases in the United States occur in people age 65 and older. The result is a dearth of knowledge on how to treat the very population most likely to be diagnosed with cancer. Now, the American Society of Clinical […]
  • Scientists at City of Hope and UCLA have become the first to inhibit the expression of a protein, called TWIST that promotes tumor invasion and metastasis when activated by cancer cells. As such, they’ve taken the first step in developing a potential new therapy for some of the deadliest cancers, including ovar...
  • Upon completing her final round of chemotherapy for ovarian cancer earlier this month, Maria Velazquez-McIntyre, a 51-year-old Antelope Valley resident, celebrated the milestone by giving other patients a symbol of hope – a Survivor Bell. The bell may look ordinary, but for cancer patients undergoing chemothera...
  • Many Americans understand that obesity is tied to heart disease and diabetes but, according to a new survey, too few – only 7 percent – know that obesity increases the risk of cancer. Specific biological characteristics can increase cancer risk in obese people, and multiple studies have shown correlations betwe...
  • As breast cancer survivors know, the disease’s impact lingers in ways both big and small long after treatment has ended. A new study suggests that weight gain – and a possible corresponding increase in heart disease and diabetes risk – may be part of that impact. In the first study to evaluate weight chan...
  • Becoming what’s known as an independent scientific researcher is no small task, especially when working to translate research into meaningful health outcomes. Yet that independent status is vital, enabling researchers to lead studies and avenues of inquiry that they believe to be promising. Clinicians, especial...
  • 720 days. That’s how long Alex Tung, 38, had to give up surfing after being diagnosed with acute myeloid leukemia. For most people, even some surfers, such a hiatus wouldn’t be a big deal, but for Tung, surfing has been everything. The Southern California resident began surfing when he was in elemen...
  • There are few among us who have not experienced loss of a friend or loved one, often without warning, or like those of us who care for people with cancer, after a lingering illness. It is a time when emotions run high and deep, and as time passes from the moment of loss, we often […]
  • For the past four years, neurosurgeon and scientist Rahul Jandial, M.D., Ph.D., has been studying how breast cancer cells spread, or metastasize, to the brain, where they become life-threatening tumors. Known as secondary brain tumors, these cancers have become increasingly common as treatment advances have ena...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. A primary symptom is a rash that arises initially in areas of the skin that are not normally exposed to sunlight....
  • There’s science camp, and then there’s “mystery” science camp. City of Hope’s new science camp for middle school students is of the especially engaging latter variety. From Monday, July 13, to Friday, July 17, rising middle-school students from across the San Gabriel Valley were presented with a “patient” with ...
  • Women diagnosed with breast cancer quickly learn their tumor’s type, meaning the characteristics that fuel its growth. That label guides the treatment of their disease, as well as their prognosis when it comes to treatment effectiveness. Sometimes, however, doctors can’t accurately predict treatment effectivene...
  • In years past, Bladder Cancer Awareness Month has been a sobering reminder of a disease with few treatment options. For patients with metastatic disease (disease that has spread from the bladder to distant organs), average survival is typically just over one year. Fortunately, things are changing. Academic inst...
  • Tina Wang was diagnosed with Stage 4 diffuse large b cell lymphoma at age 22. She first sought treatment at her local hospital, undergoing two cycles of treatment. When the treatment failed to eradicate her cancer, she came to City of Hope. Here, Wang underwent an autologous stem cell transplant and participate...