A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular Medicine Bookmark and Share

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine

Molecular Medicine

The Department of Molecular Medicine of Beckman Research Institute of City of Hope  advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead cutting-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
 
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
 
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),   which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for phase I and II clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 

To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
  • sophisticated organic synthesis and medicinal chemistry
  • high-tech protein engineering
  • functional genomics, proteomics, and microarray gene expression profiling
  • high throughput screens of plant extracts and chemical libraries
  • advanced NMR spectroscopy and computational modeling
  • state-of-the-art X-ray crystallography
  • leading-edge super-resolution microscopy
 
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.
 
 
Laboratory Research
 
 
Jacob Berlin, Ph.D. - Molecular medicine
Dr. Berlin’s research group is focused on the application of nanomaterials for the diagnosis and treatment of cancer.
 
Yuan Chen, Ph.D. - Ubiquitin-like modifications
Dr. Chen investigates post-translational modifications by ubiquitin-like proteins via a wide range of techniques that include determination of protein structures and dynamics by NMR, investigation of enzyme mechanisms by biochemical and biophysical means, and examination of the role of these modifications in response to DNA damage by cellular and molecular biology methods.
 
David Horne, Ph.D., chair  - Synthetic/medicinal chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
 
Tijana Jovanovic-Talisman, Ph.D. - Super-resolution microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.

Theodore G. Krontiris, M.D., Ph.D. - Genetic risk and disease
Dr. Krontiris and his group examine the relationship between certain unstable regions of the genome, known as hypervariable minisatellites, and cancer risk.

John Termini, Ph.D. - Molecular medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.

John Williams, Ph.D. - X-ray crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.
 

Molecular Medicine Faculty

Molecular Medicine Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
NEWS & UPDATES
  • Brain tumors are exceptionally difficult to treat. They can be removed surgically, but individual cancer cells may have already spread elsewhere in the brain and can escape the effects of both radiation and chemotherapy. To prevent tumors from recurring, doctors need a way to find and stop those invasive cancer...
  • Breast cancer risk is personal; breast cancer risk assessment should be, too. To that end, City of Hope researchers have developed a starting point to help women (and their doctors) with a family history of the disease begin that risk assessment process. The result is an iPhone app, called BRISK, for Breast Can...
  • When it comes to breast cancer, women aren’t limited to getting screened and, if diagnosed, making appropriate treatment choices. They can also take a proactive stance in the fight against breast cancer by understanding key risk factors and practicing lifestyle habits that can help reduce their own breast...
  • Cancers of the blood and immune system are considered to be among the most difficult-to-treat cancers. A world leader in the treatment of blood cancers, City of Hope is now launching an institute specifically focused on treating people with lymphoma, leukemia and myeloma, as well as other serious blood and bone...
  • Genetics, genes, genome, genetic risk … Such terms are becoming increasingly familiar to even nonresearchers as studies and information about the human make-up become more extensive and more critical. At City of Hope, these words have long been part of our vocabulary. Researchers and physicians are studyi...
  • Mammograms are currently the best method to detect breast cancer early, when it’s easier to treat and before it’s big enough to feel or cause symptoms. But recent mammogram screening guidelines may have left some women confused about when to undergo annual testing. Here Lusi Tumyan, M.D., chief of t...
  • Although chemotherapy can be effective in treating cancer, it can also exact a heavy toll on a patient’s health. One impressive alternative researchers have found is in the form of a vaccine. A type of immunotherapy, one part of the vaccine primes the body to react strongly against a tumor; the second part dire...
  • The breast cancer statistic is attention-getting: One in eight women will be diagnosed with breast cancer during her lifetime. That doesn’t mean that, if you’re one of eight women at a dinner table, one of you is fated to have breast cancer (read more on that breast cancer statistic), but it does mean that the ...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. In his first post, ...
  • Advanced age tops the list among breast cancer risk factor for women. Not far behind is family history and genetics. Two City of Hope researchers delving deep into these issues recently received important grants to advance their studies. Arti Hurria, M.D., director of the Cancer and Aging Research Program, and ...
  • City of Hope is extending the reach of its lifesaving mission well beyond U.S. borders. To that end, three distinguished City of Hope leaders visited China earlier this year to lay the foundation for the institution’s new International Medicine Program. The program is part of City of Hope’s strategi...
  • A hallmark of cancer is that it doesn’t always limit itself to a primary location. It spreads. Breast cancer and lung cancer in particular are prone to spread, or metastasize, to the brain. Often the brain metastasis isn’t discovered until years after the initial diagnosis, just when patients were beginning to ...
  • Blueberries, cinnamon, baikal scullcap, grape seed extract (and grape skin extract), mushrooms, barberry, pomegranates … all contain compounds with the potential to treat, or prevent, cancer. Scientists at City of Hope have found tantalizing evidence of this potential and are determined to explore it to t...
  • Most women who are treated for breast cancer with a mastectomy do not choose to undergo reconstructive surgery. The reasons for this, according to a recent JAMA Surgery study, vary. Nearly half say they do not want any additional surgery, while nearly 34 percent say breast cancer reconstruction simply isn’t imp...
  • The leading risk factor for breast cancer is simply being a woman. The second top risk factor is getting older. Obviously, these two factors cannot be controlled, which is why all women should be aware of their risk and how to minimize those risks. Many risk factors can be mitigated, and simple changes can lead...