A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
OConnor, Timothy, Ph.D. Laboratory Bookmark and Share

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.

OConnor, Timothy, Ph.D. Laboratory

Laboratory of Timothy OConnor, Ph.D.

DNA repair is a basic necessary function in all cells, and the mechanisms for repair or damage avoidance are evolutionarily conserved. Cells are constantly subjected to DNA damage from exogenous environmental sources, and also from endogenous oxidative metabolism. Our laboratory is interested in DNA repair mechanisms, the biological consequences of repair failure, and how DNA repair mechanisms can be used to control the epigenome of cells. A complete understanding of DNA repair pathways and the activities of DNA repair proteins can lead to the identification of cellular defects linked to cancer etiology or to targets for tumor therapy.
 
Another more recent area of interest for our laboratory is DNA repair in stem cells. Although stem cells hold great promise in human disease treatment, the DNA repair capabilities must be robust and the genetic stability of cells fully characterized before their use in any regenerative therapy.
 
To address these areas we employ both in vitro and in vivo models to examine:
 
DNA Repair
DNA in cells is constantly exposed to damage from both endogenous and exogenous sources. To remove damage and maintain genomic stability, cells have evolved DNA repair systems. The protein levels in these pathways are finely tuned, and DNA damage may induce production of DNA repair proteins. We study DNA damage and repair from several aspects. Our work involves the study of adducts, the repair enzymes involved in adduct removal, how a repair system functions to remove an adduct, how repair systems interact, and finally the response of cells to DNA damage. One system that we focus on is the base excision repair (BER) pathway replacing mismatched or modified bases in DNA. BER is one of the most important systems in the elimination of endogenous DNA damage. The goal of our research is to understand how DNA repair proteins function to eliminate deleterious adducts from DNA and maintain genomic stability. Our research is divided into several areas.

DNA Repair Enzymology
We have cloned and overproduced numerous DNA repair proteins, and our work in this area continues. We have used the homogeneous proteins to study their biochemical and enzymatic properties. DNA repair proteins are often associated in complexes to facilitate repair. We have recently identified an interaction between two DNA repair proteins involved in the initial steps of both the base and nucleotide excision repair pathways. This interaction could prove critical in directing repair along both pathways. We are currently developing other methods to study these protein-protein interactions.

Regulation of DNA Repair Genes
In response to DNA damage, DNA repair capacity can increase, decrease, or remain unchanged. We are now investigating the response of DNA repair genes to DNA damage at the mRNA, protein, and activity levels. Alteration of the levels of DNA repair proteins can result in a change in the efficiency of a given DNA repair system to remove adducts. This work will serve as the basis for predicting the outcome of different chemo- and radio-therapeutic treatments.

In vivo Repair of DNA Damage
In addition to the study of individual DNA repair enzymes, we are interested in how these enzymes function in cells to excise DNA damage. We are using genomic sequencing techniques, such as ligation-mediated polymerase chain reaction (LMPCR), to follow DNA repair in vivo. We have shown that the repair of methylated bases via BER at nucleotide resolution in normal human cells is heterogeneous and have identified sites of DNA repair footprints. Damage and repair at nucleotide resolution of bases damaged by oxidation and chemotherapeutic agents have also been studied. We are adapting this technique to study the effects of gene therapy agents on the function of DNA repair in human cells.
 
For more information on Dr. O'Connor, please click here.
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Karen Reckamp, M.D., M.S., has an office next to my own, and we often see patients at the same time. As such, I’ve gotten to know her quite well over the years, and I’ve also gotten a glimpse of many of her patients. She specializes in lung cancer, and most of her patients have tumors […]
  • Today is National Doctors Day, the official day to recognize, thank and celebrate the tremendous work physicians do each and every day. Launched in 1991 via a presidential proclamation from then-President George Bush, the observance offers a chance to reflect on the qualities that define truly great medical car...
  • When considering cancer risk, categories like “women’s cancers” and “men’s cancers” may not matter. A complete medical history, especially of first-degree relatives, must be considered when evaluating risk. A new study drives home that fact. Published in the journal Cancer, the study found a link between a fami...
  • Precision medicine holds promise – on that doctors, especially cancer specialists, can agree. But this sophisticated approach to treatment, which incorporates knowledge about a person’s genetic profile, environment and lifestyle, isn’t yet standard for all cancers. It can’t be. Researchers and scientists are st...
  • Frank Di Bella, 70, is on a mission: Find a cure for metastatic bladder cancer. It’s just possible he might. Although Di Bella isn’t a world-renowned physician, cancer researcher or scientist, he knows how to make things happen. For more than 20 years, he served as chairman of annual fundraising gal...
  • The physical side effects of cancer can damage anyone’s self-confidence, but especially that of women who, rightly or wrongly, are more likely to find their appearance (or their own perception of their appearance) directly connected to their ability to face the world with something resembling aplomb. Furt...
  • The promise of stem cell therapy has long been studied in laboratories. Now, as medicine enters an era in which this therapy will be increasingly available to patients, the nurses who help deliver it will be in the spotlight. City of Hope, which has launched its Alpha Clinic for Cell Therapy and Innovation (ACT...
  • Just because you can treat a condition, such as high cholesterol, at the end of life — well, that doesn’t mean you should. That’s the basic lesson of a study to be published March 30 in JAMA Internal Medicine. The ramifications go far beyond that. The research, in which City of Hope’s Betty Fe...
  • The understanding of the relationship between genetics and cancer risk continues to grow, with more genetic testing than ever before available to patients. However, the adage that a little knowledge is a dangerous thing is applicable: Without context for what a test result means, and without meaningful guidance...
  • Standard prostate biopsies haven’t changed significantly in the past 30 years – nor have the problems inherent with them. Regular biopsies have an expected error rate: Tumors may potentially be undersampled and, 30 percent of the time, men who undergo a radical prostatectomy are found to have more aggress...
  • In the field of cancer, patients have had surgery, chemotherapy and radiation therapy as options. Now, as City of Hope officially opens the Alpha Clinic for Cellular Therapy and Innovation, patients battling cancer and other life-threatening diseases have another option: stem-cell-based therapy. The Alpha Clini...
  • How does the environment affect our health? Specifically, how does it affect our risk of cancer? City of Hope physicians and researchers recently answered those questions in an Ask the Experts event in Corona, California, explaining the underlying facts about how the environment can affect our health. Moderator...
  • Nurses and other medical professionals have come to understand that it’s not enough just to fight disease. They also must provide pain relief, symptom control, and an unrelenting commitment to improve patients’ quality of life — especially at the end of life. Not too long ago, this was a relatively ...
  • “Tonight, I’m launching a new precision medicine initiative to bring us closer to curing diseases like cancer.” These were the words of President Barack Obama on Jan. 20, 2015, during his State of the Union address. So what is precision medicine, and how close are we to making it a reality for...
  • March is Colon Cancer Awareness Month. How sad, yet how serendipitous, that the co-creator of “The Simpsons” Sam Simon passed away in March after a four-year battle against colon cancer. What message can we all learn from his illness that can help us prevent and overcome colon cancer in our own lives? Colon can...