A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Shen, Binghui, Ph.D. Bookmark and Share

Laboratory of Binghui Shen, Ph.D.

The Shen laboratory has carried out various major National Institutes of Health-funded projects. In addition, we collaborate with Dr. Yuejin Hua of Zhejiang University, China, in the study of radiation-induced DNA damage responses in Deinococcus radiodurans.
 
Research Environment
The laboratory is located in the Beckman Research Institute at City of Hope in Duarte, California. Duarte is in the northeast suburbs of Los Angeles, just outside Pasadena, nestled in the foothills of the San Gabriel mountains. We're close to all of the entertainment and scenic attractions Southern California has to offer, yet far enough removed from the big city buzz. Take a half hour drive to the beach, or an hour and a half to local skiing. The medical center and Beckman Research Institute are situated on a beautiful, 112-acre campus, and our lab is housed in the Kaplan-Black Research Building.
 
Approximately 25 NCI-supported core facilities are available for biomedical research in City of Hope as a Comprehensive Cancer Center research facility. These include: microarray, mass-spectroscopy/protein sequencing, DNA sequencing, oligonucleotide & peptide synthesis, phosphor- and fluoro-imaging, histology/histochemistry, frozen tumor bank, time-lapse videography, confocal and electron microscopies, cytogenetics, NMR, flow-cytometry, molecular modeling, transgenic mice, and animal care.
 
An active Postdoctoral Association (PDA) promotes interaction between the Institute and postdoctoral fellows and graduate students, to help to ensure that their transition is smooth and their time here is as fulfilling as possible
 

Binghui Shen, Ph.D. Research

DNA Replication, Repair, and Apoptosis Nucleases in Genome Stability and Cancer
DNA replication and repair are critical for maintaining genome stability. These processes are in part dependent on the activities of an emerging family of structure-specific nucleases. Flap EndoNuclease 1 (FEN1) is a metallo- and substrate structure specific- nuclease. It possesses three distinct biochemical activities, functioning as a flap endonuclease (FEN), a nick-specific exonuclease (EXO), and a gapdependent endonuclease (GEN). FEN1 plays a critical role in maintaining human genome stability via six different pathways. It serves as a major nuclease for RNA primer removal during Okazaki fragment maturation and for long patch base excision repair using its FEN activity. Its concerted action of EXO and GEN activities is critical in resolution of di- and tri- nucleotide repeat secondary structures and stalled DNA replication forks, as well as in apoptotic cell DNA fragmentation. It also plays a major role in maintenance of telomere stability.
 
The multiple functions of FEN1 are regulated via three major mechanisms: formation of complexes with different protein partners, cellular compartmentation, and post-translational modifications. More than 30 proteins have been identified to interact with FEN1, forming specific complexes in different pathways. Upon acetylation, FEN1 translocates into the nucleus in response to DNA damage and cell cycle phase changes. It is very much enhanced in the nucleolus for maintenance of stability of tandem repeats of ribosomal DNA. FEN1 is also in mitochondrion, playing an important role in mitochondrial DNA replication and repair. The nuclease is acetylated, phosphorylated or methylated in different molecular events and the interaction between methylation and phosphorylation determines its recruitment onto DNA replication forks via proliferating cell nuclear antigen. The first group of FEN1 somatic mutations has been identified in human cancer cells, which has clear segregation of biochemical activities. The future emphasis will be placed on the mutations and prevalent polymorphisms that may impair one of the three major regulatory mechanisms. See Project 1  - Functional Analysis of FEN-1 Nuclease in Genome Stability.
 
Recently, we found that another major nuclease, DNA2, is dominantly localized into mitochondria and cooperatively processes replication and repair DNA intermediates for ligation and completion of circular mtDNA replication and repair. These novel and exciting observations prompted us to: i) knock out the DNA2 gene in mice to determine if defective DNA2-mediated RNA primer removal causes mitochondrial genomic instabilities, consequently promoting cancers and other genetic diseases, and ii) link functional defects of the DNA2 mutations identified in human mitochondrion-based diseases to pathologic mechanisms. Information made available from these studies should establish a relationship among the functions of these novel mitochondrial genes, unique mitochondrial mutagenic phenotype(s), and pathological mechanisms. The proposed study may also establish a foundation for the development of new treatment regimens for patients with mitochondrion-based cancers and other disorders. See Project 2 - Role of Nucleases in RNA Primer Removal and Mutagenesis.
 
The other novel nuclease that we are interested in is called TatD, which possesses a nick and 3’ exonuclease activity and is involved in apoptosis DNA fragmentation. In collaboration with Dr. John Williams in the Department of Molecular Medicine, we are currently undertaking a detailed 3-D structural and functional analysis of TatD to determine its role in apoptosis and the biological consequences, in human cells, of defects in this nuclease.
 

Binghui Shen, Ph.D. Project 1

Functional analysis of FEN1 nuclease in genome stability
The project was funded by NCI to test a hypothesis that subtle deficiency or defects in the individual biochemical activities of FEN1 may lead to different phenotypes in yeast and different susceptibilities in the human population to environmental stresses and individual differences in the onset of genetic diseases.
 
Figure to the right: E160D FEN1 mice are highly susceptible to cancers as a result of their mutator phenotype and chronic inflammation. The panel shows the chronic inflammation and Tumorigenesis in the lung. Top, disease incidence at specific life stages (timeline in months) of wild-type (WT), Fen1ED/+ (ED/+) and Fen1ED/ED (ED/ED) mice. Below, histology (H&E) of normal lung, lung with chronic inflammation, adenoma and adenocarcinoma in ED/ED mice. From: Zheng et al., 2008 Nature Medicine.
 

Binghui Shen, Ph.D. Project 2

Role of nuclease in RNA primer removal and mutagenesis
The major goals of this project are to carry out experiments to test roles of several eukaryotic nuclease complexes in RNA primer removal during lagging strand DNA synthesis in nuclei and mitochondria, and to examine the mutagenic consequences of defects of the individual nuclease complexes.
 
Localization of hDNA2 and mitochondria-lspecific heat-shock protein 70 (mtHSP70) in HeLa cells. hDNA2 (red) and mtHSP70 (green) were stained with antibodies to hDNA2 and mtHSP70. The nucleus (blue) was stained with DAPI. Yellow spots (arrows) indicate co-localization of hDNA2 and mtHSP70 (merged views). The square box in the upper right panel is a magnification of the area framed in white.
 

Binghui Shen, Ph.D. Laboratory Members

Huifang Dai, B.S.
Sr. Research Associate
Ph 626-256-HOPE (4673), ext. 63818
Fax 626-301-8892
hdai@coh.org
 
Joonas Jamsen, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. (W/A)
Fax 626-301-8892
jjamsen@coh.org
 
Weiqiang Lin, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext.64146
Fax 626-301-8892
wlin@coh.org
 
Guojun Lin, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 63818
Fax 626-301-8892
glu@coh.org
 
David Onyango, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 65284
Fax 626-301-8892
donyango@coh.org
 
Julie Kanjanapangka
Graduate Student
Ph 626-256-HOPE (4673), ext. 62935
Fax 626-301-8892
jkanjanapangka@coh.org
 
Zhenxing Wu, M.S.
Predoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 63518
Fax 626-301-8892
zhwu@coh.org
 
Li Zheng, Ph.D.
Assistant Research Professor
Ph 626-256-HOPE (4673), ext. 64147
Fax 626-301-8892
lzheng@coh.org
 
Mian Zhou, Ph.D.
Staff Scientist
Ph 626-256-HOPE (4673), ext. 64147
Fax 626-301-8892
mzhou@coh.org
 

Shen, Binghui, Ph.D.

Laboratory of Binghui Shen, Ph.D.

The Shen laboratory has carried out various major National Institutes of Health-funded projects. In addition, we collaborate with Dr. Yuejin Hua of Zhejiang University, China, in the study of radiation-induced DNA damage responses in Deinococcus radiodurans.
 
Research Environment
The laboratory is located in the Beckman Research Institute at City of Hope in Duarte, California. Duarte is in the northeast suburbs of Los Angeles, just outside Pasadena, nestled in the foothills of the San Gabriel mountains. We're close to all of the entertainment and scenic attractions Southern California has to offer, yet far enough removed from the big city buzz. Take a half hour drive to the beach, or an hour and a half to local skiing. The medical center and Beckman Research Institute are situated on a beautiful, 112-acre campus, and our lab is housed in the Kaplan-Black Research Building.
 
Approximately 25 NCI-supported core facilities are available for biomedical research in City of Hope as a Comprehensive Cancer Center research facility. These include: microarray, mass-spectroscopy/protein sequencing, DNA sequencing, oligonucleotide & peptide synthesis, phosphor- and fluoro-imaging, histology/histochemistry, frozen tumor bank, time-lapse videography, confocal and electron microscopies, cytogenetics, NMR, flow-cytometry, molecular modeling, transgenic mice, and animal care.
 
An active Postdoctoral Association (PDA) promotes interaction between the Institute and postdoctoral fellows and graduate students, to help to ensure that their transition is smooth and their time here is as fulfilling as possible
 

Research

Binghui Shen, Ph.D. Research

DNA Replication, Repair, and Apoptosis Nucleases in Genome Stability and Cancer
DNA replication and repair are critical for maintaining genome stability. These processes are in part dependent on the activities of an emerging family of structure-specific nucleases. Flap EndoNuclease 1 (FEN1) is a metallo- and substrate structure specific- nuclease. It possesses three distinct biochemical activities, functioning as a flap endonuclease (FEN), a nick-specific exonuclease (EXO), and a gapdependent endonuclease (GEN). FEN1 plays a critical role in maintaining human genome stability via six different pathways. It serves as a major nuclease for RNA primer removal during Okazaki fragment maturation and for long patch base excision repair using its FEN activity. Its concerted action of EXO and GEN activities is critical in resolution of di- and tri- nucleotide repeat secondary structures and stalled DNA replication forks, as well as in apoptotic cell DNA fragmentation. It also plays a major role in maintenance of telomere stability.
 
The multiple functions of FEN1 are regulated via three major mechanisms: formation of complexes with different protein partners, cellular compartmentation, and post-translational modifications. More than 30 proteins have been identified to interact with FEN1, forming specific complexes in different pathways. Upon acetylation, FEN1 translocates into the nucleus in response to DNA damage and cell cycle phase changes. It is very much enhanced in the nucleolus for maintenance of stability of tandem repeats of ribosomal DNA. FEN1 is also in mitochondrion, playing an important role in mitochondrial DNA replication and repair. The nuclease is acetylated, phosphorylated or methylated in different molecular events and the interaction between methylation and phosphorylation determines its recruitment onto DNA replication forks via proliferating cell nuclear antigen. The first group of FEN1 somatic mutations has been identified in human cancer cells, which has clear segregation of biochemical activities. The future emphasis will be placed on the mutations and prevalent polymorphisms that may impair one of the three major regulatory mechanisms. See Project 1  - Functional Analysis of FEN-1 Nuclease in Genome Stability.
 
Recently, we found that another major nuclease, DNA2, is dominantly localized into mitochondria and cooperatively processes replication and repair DNA intermediates for ligation and completion of circular mtDNA replication and repair. These novel and exciting observations prompted us to: i) knock out the DNA2 gene in mice to determine if defective DNA2-mediated RNA primer removal causes mitochondrial genomic instabilities, consequently promoting cancers and other genetic diseases, and ii) link functional defects of the DNA2 mutations identified in human mitochondrion-based diseases to pathologic mechanisms. Information made available from these studies should establish a relationship among the functions of these novel mitochondrial genes, unique mitochondrial mutagenic phenotype(s), and pathological mechanisms. The proposed study may also establish a foundation for the development of new treatment regimens for patients with mitochondrion-based cancers and other disorders. See Project 2 - Role of Nucleases in RNA Primer Removal and Mutagenesis.
 
The other novel nuclease that we are interested in is called TatD, which possesses a nick and 3’ exonuclease activity and is involved in apoptosis DNA fragmentation. In collaboration with Dr. John Williams in the Department of Molecular Medicine, we are currently undertaking a detailed 3-D structural and functional analysis of TatD to determine its role in apoptosis and the biological consequences, in human cells, of defects in this nuclease.
 

Project 1

Binghui Shen, Ph.D. Project 1

Functional analysis of FEN1 nuclease in genome stability
The project was funded by NCI to test a hypothesis that subtle deficiency or defects in the individual biochemical activities of FEN1 may lead to different phenotypes in yeast and different susceptibilities in the human population to environmental stresses and individual differences in the onset of genetic diseases.
 
Figure to the right: E160D FEN1 mice are highly susceptible to cancers as a result of their mutator phenotype and chronic inflammation. The panel shows the chronic inflammation and Tumorigenesis in the lung. Top, disease incidence at specific life stages (timeline in months) of wild-type (WT), Fen1ED/+ (ED/+) and Fen1ED/ED (ED/ED) mice. Below, histology (H&E) of normal lung, lung with chronic inflammation, adenoma and adenocarcinoma in ED/ED mice. From: Zheng et al., 2008 Nature Medicine.
 

Project 2

Binghui Shen, Ph.D. Project 2

Role of nuclease in RNA primer removal and mutagenesis
The major goals of this project are to carry out experiments to test roles of several eukaryotic nuclease complexes in RNA primer removal during lagging strand DNA synthesis in nuclei and mitochondria, and to examine the mutagenic consequences of defects of the individual nuclease complexes.
 
Localization of hDNA2 and mitochondria-lspecific heat-shock protein 70 (mtHSP70) in HeLa cells. hDNA2 (red) and mtHSP70 (green) were stained with antibodies to hDNA2 and mtHSP70. The nucleus (blue) was stained with DAPI. Yellow spots (arrows) indicate co-localization of hDNA2 and mtHSP70 (merged views). The square box in the upper right panel is a magnification of the area framed in white.
 

Lab Members

Binghui Shen, Ph.D. Laboratory Members

Huifang Dai, B.S.
Sr. Research Associate
Ph 626-256-HOPE (4673), ext. 63818
Fax 626-301-8892
hdai@coh.org
 
Joonas Jamsen, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. (W/A)
Fax 626-301-8892
jjamsen@coh.org
 
Weiqiang Lin, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext.64146
Fax 626-301-8892
wlin@coh.org
 
Guojun Lin, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 63818
Fax 626-301-8892
glu@coh.org
 
David Onyango, Ph.D.
Postdoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 65284
Fax 626-301-8892
donyango@coh.org
 
Julie Kanjanapangka
Graduate Student
Ph 626-256-HOPE (4673), ext. 62935
Fax 626-301-8892
jkanjanapangka@coh.org
 
Zhenxing Wu, M.S.
Predoctoral Fellow
Ph. 626-256-HOPE (4673), ext. 63518
Fax 626-301-8892
zhwu@coh.org
 
Li Zheng, Ph.D.
Assistant Research Professor
Ph 626-256-HOPE (4673), ext. 64147
Fax 626-301-8892
lzheng@coh.org
 
Mian Zhou, Ph.D.
Staff Scientist
Ph 626-256-HOPE (4673), ext. 64147
Fax 626-301-8892
mzhou@coh.org
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
NEWS & UPDATES
  • Beyond the pink ribbons, special product fundraisers, and the pastel sea of color that marks October, Breast Cancer Awareness Month offers a reason to celebrate and to reflect. More than 2.8 million breast cancer survivors live in the U.S. They are survivors of the second most-common cancer in women, behind ski...
  • Gliomas, a type of tumor that grows in the brain, are very difficult to treat successfully due to their complex nature. That might not always be the case. First some background: The most aggressive and common type of primary brain tumor in adults is glioblastoma. Although the brain tumor mass can often be remov...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. The result is rashes and, sometimes, tumors, which can be mistaken for other dermatological conditions. In a smal...
  • Weighing your breast cancer risk? One study suggests a measure to consider is skirt size. A British study suggests that for each increase in skirt size every 10 years after age 25, the five-year risk of developing breast cancer postmenopause increases from one in 61 to one in 51 – a 77 percent increase in risk....
  • Runners prize medals for 5Ks and marathons. Becky Stokes has a medal she cherishes from a very different kind of race: the marathon of treatments necessary to beat her aggressive triple-negative breast cancer. Just a week ago, she completed her last radiation treatment, and danced in the hospital with the staff...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. Darakjian’s s...
  • The environment plays a role in causing cancer – this much we know. But scientists are still trying to understand what that role is, what environmental factors are in play and how precisely those factors are linked to cancer. Now City of Hope researchers have unlocked a clue as to how one carcinogen triggers ca...
  • Jonathan Yamzon, M.D., assistant clinical professor of surgery in the Division of Urology and Urologic Oncology, explains his approach to what’s known as “active surveillance” of men with prostate cancer. Patients need to be educated about their treatment options, he writes. Active surveillanc...
  • For most prostate cancer patients, surgery or radiation therapy is the initial and primary treatment against the disease. But some patients can benefit from chemotherapy and hormone therapy too, especially if there are signs of a relapse or if the cancer has spread beyond the prostate gland. Here, Cy Stein, M.D...
  • Cancer research has yielded scientific breakthroughs that offer patients more options, more hope for survival and a higher quality of life than ever before. The 14.5 million cancer patients living in the United States are living proof that cancer research saves lives. Now, in addition to the clinic, hospital an...
  • Advances in cancer treatment, built on discoveries made in the laboratory then brought to the bedside, have phenomenally changed the reality of living with a cancer diagnosis. More than any other time in history, people diagnosed with cancer are more likely to survive and to enjoy a high quality of life. Howeve...
  • While health care reform has led to an increase in the number of people signing up for health insurance, many people remain uninsured or are not taking full advantage of the health benefits they now have. Still others are finding that, although their premiums are affordable, they aren’t able to see the do...
  • Kidney cancer rates and thyroid cancer rates in adults have continued to rise year after year. Now a new study has found that incidence rates for these cancers are also increasing in children — particularly in African-American children. The study, published online this month in Pediatrics, examined childhood ca...
  • Thyroid cancer has become one of the fastest-growing cancers in the United States for both men and women. The chance of being diagnosed with the cancer has nearly doubled since 1990. This year an estimated 63,000 people will be diagnosed with thyroid cancer in the United States and nearly 1,900 people will die ...
  • Older teenagers and young adults traditionally face worse outcomes than younger children when diagnosed with brain cancer and other central nervous system tumors. A first-of-its-kind study shows why. A team of researchers from the departments of Population Sciences and Pathology at City of Hope recently examine...