A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Singer-Sam, Judith, Ph.D. Laboratory Bookmark and Share

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 

Singer-Sam, Judith, Ph.D. Laboratory

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Research

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The physical side effects of cancer can damage anyone’s self-confidence, but especially that of women who, rightly or wrongly, are more likely to find their appearance (or their own perception of their appearance) directly connected to their ability to face the world with something resembling aplomb. Furt...
  • The promise of stem cell therapy has long been studied in laboratories. Now, as medicine enters an era in which this therapy will be increasingly available to patients, the nurses who help deliver it will be in the spotlight. City of Hope, which has launched its Alpha Clinic for Cell Therapy and Innovation (ACT...
  • Just because you can treat a condition, such as high cholesterol, at the end of life — well, that doesn’t mean you should. That’s the basic lesson of a study to be published March 30 in JAMA Internal Medicine. The ramifications go far beyond that. The research, in which City of Hope’s Betty Fe...
  • The understanding of the relationship between genetics and cancer risk continues to grow, with more genetic testing than ever before available to patients. However, the adage that a little knowledge is a dangerous thing is applicable: Without context for what a test result means, and without meaningful guidance...
  • Standard prostate biopsies haven’t changed significantly in the past 30 years – nor have the problems inherent with them. Regular biopsies have an expected error rate: Tumors may potentially be undersampled and, 30 percent of the time, men who undergo a radical prostatectomy are found to have more aggress...
  • In the field of cancer, patients have had surgery, chemotherapy and radiation therapy as options. Now, as City of Hope officially opens the Alpha Clinic for Cellular Therapy and Innovation, patients battling cancer and other life-threatening diseases have another option: stem-cell-based therapy. The Alpha Clini...
  • How does the environment affect our health? Specifically, how does it affect our risk of cancer? City of Hope physicians and researchers recently answered those questions in an Ask the Experts event in Corona, California, explaining the underlying facts about how the environment can affect our health. Moderator...
  • Nurses and other medical professionals have come to understand that it’s not enough just to fight disease. They also must provide pain relief, symptom control, and an unrelenting commitment to improve patients’ quality of life — especially at the end of life. Not too long ago, this was a relatively ...
  • “Tonight, I’m launching a new precision medicine initiative to bring us closer to curing diseases like cancer.” These were the words of President Barack Obama on Jan. 20, 2015, during his State of the Union address. So what is precision medicine, and how close are we to making it a reality for...
  • March is Colon Cancer Awareness Month. How sad, yet how serendipitous, that the co-creator of “The Simpsons” Sam Simon passed away in March after a four-year battle against colon cancer. What message can we all learn from his illness that can help us prevent and overcome colon cancer in our own lives? Colon can...
  • Misagh Karimi, M.D., assistant clinical professor, is a medical oncologist at one of City of Hope’s newest community practice locations, located in Corona in Riverside County. A recent community health report from Corona’s public health department stated that obesity rates for teens and adults in Riverside Coun...
  • In 1975, the median survival for patients with ovarian cancer was about 12 months. Today, the median survival is more than 5 years. Although researchers and clinicians are far from satisfied, the progress in ovarian cancer treatment is encouraging, said Robert Morgan, M.D., F.A.C.P., professor of medical oncolo...
  • Colorectal cancer may be one of the most common cancers in both men and women, but it’s also one of the most curable cancers. Today, because of effective screening tests and more advanced treatment options, there are more than 1 million survivors of colorectal cancer in the United States. Here, colorectal...
  • Breast cancer treatment can damage a woman’s ability to become pregnant, making the impact on fertility one of the key factors that many consider when choosing a therapy regimen. Now a study has found that breast cancer patients treated with a hormone-blocking drug in addition to chemotherapy were less li...
  • My colleagues in the clinic know I’ve got a soft spot. Last week, a patient of mine offered me a fantastic compliment. “You’re looking younger these days, Dr. Pal!” she said, offering me a big hug as she proceeded out of the clinic room. Lovely, I thought. The early morning workouts are paying off. She continue...