A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Singer-Sam, Judith, Ph.D. Laboratory Bookmark and Share

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 

Singer-Sam, Judith, Ph.D. Laboratory

Laboratory of Judith Singer-Sam, Ph.D.

For a growing number of genes, only one of the two chromosomal copies (or alleles) is expressed, a phenomenon termed monoallelic expression. In some cases, there is random selection of the expressed allele; in others parental origin determines which allele is expressed, which is termed imprinting. Disorders with a genetic component in which either random monoallelic expression or imprinting may play a role include schizophrenia, multiple sclerosis, and diabetes.
 
Our goal is to understand the mechanism and extent of imprinting and monoallelic expression, and their possible relevance to inherited disorders, particularly those of the central nervous system. Towards this goal, we are studying a mouse locus corresponding to a human inherited mental retardation disorder known to involve imprinted genes, the Prader-Willi/Angelman Syndrome. We are also developing an assay that would make use of state-of-the-art microarray technology to probe for imprinting and monoallelic expression in the entire genome.
 

Research

Judith Singer-Sam, Ph.D. Research

Monoallelic Expression in the Central Nervous System
Although most genes in a cell are expressed from both the maternal and paternal chromosome, there are exceptions. For example, in women, most X-linked genes are expressed from only one of the two X chromosomes, a phenomenon called X inactivation. In addition, there is a class of autosomal genes, termed imprinted genes, for which parental origin determines which allele is expressed. Finally, there are autosomal genes that appear at first glance to be bi-allelically expressed but actually show random monoallelic expression (sometimes termed allelic exclusion) at the single-cell level. These exceptions, examples of epigenetics, have proven to be of great interest for researchers because they shed light on gene regulation, chromatin structure, development, and the pattern of inheritance of certain genetic disorders.
 
My research program is focused on the potential role of allele-specific expression in development and function of the central nervous system (CNS). What is the evidence that genes likely to play a role in CNS function show such expression? Olfactory receptors, which are expressed in specialized cells of the CNS, show allelic exclusion, as does p120 catenin, which is involved in synapse formation. Intriguing recent work has shown that a number of factors involved in the immune response, including the genes for interleukin-2 and interleukin-4, also show allelic exclusion. Some of these genes are expressed in the CNS, and the possibility arises that other inflammation-sensitive genes in the CNS may show a similar pattern of expression.  Using gene expression profiling, we discovered that, Cdkn1a, coding for the cell cycle regulator p21Waf1/Cip1, is inflammation-sensitive in the CNS as well as other tissues.  While this gene is bi-allelically expressed, we expect to find additional immune response genes that do undergo monoallelic expression.
 
We have also developed an imprinting screen using expression microarrays. As a model system, we analyzed mice with imprinting defects in proximal chromosome 7; part of this region is analogous to human chromosome 15q11-q13, a locus associated with a number of behavioral and cognitive disorders including the well-studied Prader-Willi/Angelman Syndrome (PW/AS). Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the mouse PW/AS locus, in a region highly enriched in LINE-1 elements; the function of these transcripts is still unknown.  In separate work, we discovered, in collaboration with Dr. Chauncey Bowers (Department of Neurosciences) that the dense LINE-1 elements in this region are organized in a uniquely asymmetric way, perhaps related to imprinting at the locus.
 
Our current work involves the identification and characterization of genes that are subject to random monoallelic expression in the CNS. We have developed a microarray-based assay for genes that are both silenced and active at the same locus as evidenced by a dual DNA methylation pattern.  We further analyze candidate genes using SNP differences in cDNA of clonal neural stem cell lines derived from F1 hybrids of two different strains of mice. We have found a number of “hits” and are currently characterizing those that appear potentially most relevant to disorders of the CNS.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Joselyn Miller received a lifesaving bone marrow transplant at City of Hope two years ago. Here, she reflects on her gratitude as a bone marrow recipient and on giving back. By Joselyn Miller thank•ful adjective  \ˈthaŋk-fəl\ :  conscious of benefit received :  glad that something has happened or not happened, ...
  • When it comes to cancer, your family history may provide more questions than answers: How do my genes increase my risk for cancer? No one in my family has had cancer; does that mean I won’t get cancer? What cancers are common in certain populations and ethnicities? City of Hope experts have some guidance. “Your...
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...