A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Hematologic Malignancies (HM) Program Bookmark and Share

Hematologic Malignancies (HM) Program

Stephen J. Forman, M.D., Co-leader
Wing-Chung (John) Chan, M.D., Co-leader
Program Members - If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.

The long-term goal of the Hematologic Malignancies (HM) Program is to improve outcomes for patients with leukemia, lymphoma, Hodgkin's disease and multiple myeloma. HM integrates basic, translational and clinical research related to the pathogenesis and treatment of hematologic malignancies through close collaborations between basic and clinical researchers. The major areas of focus are to (a) expand opportunities and optimize outcomes for potentially curative treatment with autologous and allogeneic transplantation, (b) increase understanding of malignant stem cells in hematologic malignancies to improve cures and c) develop new, nontransplant experimental therapies for hematologic malignancies.

Recently, HM has expanded research in nontransplant therapeutics and leukemia biology. The success of monoclonal antibodies such as Rituxan (rituximab) and Campath (alemtuzumab) in the treatment of chronic lymphocytic leukemia and novel small molecules such as Gleevec (imatinib) in chronic myelogenous leukemia has made this area fertile ground for study.

Clinical and research programs have been established for specific disease entities, including acute and chronic leukemia, Hodgkin’s and non-Hodgkin’s lymphoma, and multiple myeloma.  With clinical and basic scientists working together, this creates an expanded repertoire of studies focused on individual diseases, which complements our transplant modality-driven investigations. The HM Program then shares results of these studies with researchers and clinicians in other Cancer Center Programs.

Program Goals

  •  Develop novel autologous and allogeneic transplant regimens to improve safety and efficacy of treatment, and expand their use to underserved populations including patients with HIV and older people with hematologic malignancy.
  • Study mechanisms regulating  normal and malignant hematopoietic stem cells (HSCs), and develop therapies based on manipulating normal HSCs and interventions targeting malignant stem cells.
  • Develop novel non-transplant therapeutic studies of epigenetic mechanisms, molecular targets of gene expression, RNAi and immune-based treatments.

HM Members' Research
Members of the HM Program design and lead phase I/II clinical trials using novel therapies for hematologic malignancies. The expertise represented by this group includes cytogenetics and molecular diagnostics, pathology, hematopoietic cell transplantation and graft-versus-host disease, gene- and cell-based therapies, stem cell research and biostatistics. Members of this program collaborate closely with other research programs, including Developmental Cancer Therapeutics and Cancer Immunotherapeutics, for development of small molecule- and immunological-based cancer therapeutics.
 

Hematologic Malignancies (HM) Program

Hematologic Malignancies (HM) Program

Stephen J. Forman, M.D., Co-leader
Wing-Chung (John) Chan, M.D., Co-leader
Program Members - If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.

The long-term goal of the Hematologic Malignancies (HM) Program is to improve outcomes for patients with leukemia, lymphoma, Hodgkin's disease and multiple myeloma. HM integrates basic, translational and clinical research related to the pathogenesis and treatment of hematologic malignancies through close collaborations between basic and clinical researchers. The major areas of focus are to (a) expand opportunities and optimize outcomes for potentially curative treatment with autologous and allogeneic transplantation, (b) increase understanding of malignant stem cells in hematologic malignancies to improve cures and c) develop new, nontransplant experimental therapies for hematologic malignancies.

Recently, HM has expanded research in nontransplant therapeutics and leukemia biology. The success of monoclonal antibodies such as Rituxan (rituximab) and Campath (alemtuzumab) in the treatment of chronic lymphocytic leukemia and novel small molecules such as Gleevec (imatinib) in chronic myelogenous leukemia has made this area fertile ground for study.

Clinical and research programs have been established for specific disease entities, including acute and chronic leukemia, Hodgkin’s and non-Hodgkin’s lymphoma, and multiple myeloma.  With clinical and basic scientists working together, this creates an expanded repertoire of studies focused on individual diseases, which complements our transplant modality-driven investigations. The HM Program then shares results of these studies with researchers and clinicians in other Cancer Center Programs.

Program Goals

  •  Develop novel autologous and allogeneic transplant regimens to improve safety and efficacy of treatment, and expand their use to underserved populations including patients with HIV and older people with hematologic malignancy.
  • Study mechanisms regulating  normal and malignant hematopoietic stem cells (HSCs), and develop therapies based on manipulating normal HSCs and interventions targeting malignant stem cells.
  • Develop novel non-transplant therapeutic studies of epigenetic mechanisms, molecular targets of gene expression, RNAi and immune-based treatments.

HM Members' Research
Members of the HM Program design and lead phase I/II clinical trials using novel therapies for hematologic malignancies. The expertise represented by this group includes cytogenetics and molecular diagnostics, pathology, hematopoietic cell transplantation and graft-versus-host disease, gene- and cell-based therapies, stem cell research and biostatistics. Members of this program collaborate closely with other research programs, including Developmental Cancer Therapeutics and Cancer Immunotherapeutics, for development of small molecule- and immunological-based cancer therapeutics.
 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Clinical Trials
Our aggressive pursuit to discover better ways to help patients now – not years from now – places us among the leaders worldwide in the administration of clinical trials.
 
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Discover the wide range of progressive cancer treatment options at City of Hope designed to meet the individual needs of each patient. Here, medical research and clinical care are integrated, speeding the application of scientific discoveries toward better, more effective patient cancer treatments.
City of Hope Breakthroughs
Get the latest in City of Hope's research, treatment and news you can use on our blog, Breakthroughs.
 
 
When you support City of Hope, you help us shorten the time it takes to get from bold, innovative ideas to powerful new medical treatments. Make a gift online now.


NEWS & UPDATES
  • Anyone who tours City of Hope will almost certainly be taken by two key buildings: Helford Clinical Research Hospital and Beckman Research Institute. The heart of the campus, in more ways than one, the two buildings are a stone’s throw from each other. The hospital is dedicated to treating cancer patients...
  • In June 2012, 28-year-old Emily Bennett Taylor was getting ready to celebrate her second wedding anniversary with her college sweetheart when she discovered that she had Stage 4 lung cancer. Taylor was a former college athlete, had led a healthy and active lifestyle and had never smoked. She quickly began treat...
  • “Skin cancer” was pretty much the last thing on the mind of a healthy, outdoorsy kid like Tanner Harbin. “I like hockey – playing it and watching it,” the 23-year-old from San Dimas said. “I like to go off-roading with my dad – we have a Jeep and we have a cabin up in Big Bear, so […]
  • Skin cancer is an enticing field to be in these days. Just ask Laleh Melstrom, M.D. M.S., one of City of Hope’s newest surgeons. “In the last few years, melanoma has been the type of cancer that has really shown the most progress in terms of treatments,” Melstrom said. “It’s the one cancer in 2015 that is...
  • Skin cancer is the most common type of cancer in the United States today, and its incidence is on the rise. Forty to 50 percent of light-skinned Americans who live to age 65 will have skin cancer at least once in their lives. Most of these skin cancers – about 3.5 million cases – are the […]
  • The connection between lifestyle and cancer is real. Knowing that, what can individuals do to lower their risk? City of Hope physicians recently came together to answer that precise question, explaining the links between cancer and the choices we make that affect our health. Moderator Vijay Trisal M.D., medical...
  • White button mushrooms seem fairly innocuous as fungi go. Unlike portabellas, they don’t center stage at the dinner table, and unlike truffles, they’re not the subject of gourmand fervor. But appearances can be deceiving when it comes to these mild-mannered Clark Kents of the food world. In a study ...
  • Doctors often recommend preventive screenings for several cancers, based on hereditary or genetic factors, but brain tumors aren’t one of them. Primary brain tumors, which originate in the brain rather than spreading from another location, seem to develop at random, and doctors have little insight into wh...
  • Stopping cancer starts with research. To that end, STOP CANCER has awarded $525,000 in grants to City of Hope for 2015, supporting innovative research projects and recognizing the institution’s leadership in advancing cancer treatment and prevention. Founded in 1988, STOP CANCER underwrites the work of le...
  • Cancer may not be the disease many people think it is. Normally, cancer is considered to be a disease in which cells multiply at an extremely high, and unusual, rate – increasing the likelihood of genetic mutations. But increasingly, leading researchers at City of Hope and elsewhere are contending that cancer i...
  • “Of all forms of inequality, injustice in the health care system is the most shocking and inhumane.” By the time the Rev. Martin Luther King Jr. spoke those words in Chicago in 1966, the Civil Rights Act had been passed, the Voting Rights Act was the law of the land and the March on Washington was […]
  • Eight years ago, Matthew Loscalzo surprised himself by accepting the offer to become City of Hope’s administrative director of the Sheri & Les Biller Patient and Family Resource Center and executive director of the Department of Supportive Care Medicine. At the time, he was administrative director of the Sc...
  • The mental fog that patients can experience after undergoing chemotherapy treatment for cancer has a name: “chemo brain.” “Many patients report hearing or reading about chemotherapy-related cognitive deficits, but few are actually prepared to deal with these changes,” said Celina Lemon, M.A., an occupational th...
  • Cancer treatments have improved over the years, but one potential source of treatments and cures remains largely untapped: nature. Blueberries, cinnamon, xinfeng, grape seed (and skin) extract, mushrooms, barberry and pomegranates all contain compounds with the potential to treat or prevent cancer. Scientists a...
  • In the U.S., there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate and lung, according to the American Cancer Society. Each year, 5 million people are treated for skin cancer. Here, Hans Schoellhammer, M.D., assistant clinical professor at City of Hope | Ant...