A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Immunotherapeutics (CI) Program Bookmark and Share

Cancer Immunotherapeutics Program

Peter P. Lee, M.D., Co-leader
Hua Yu, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The Cancer Immunotherapeutics (CI) Program is focused on discovery and application to clinical practice of efficacious and minimally toxic immunotherapeutic interventions for cancer. The long-term goal of the CI Program is to develop insights made by tumor immunologists into novel therapeutic approaches in preclinical model systems, which are then taken through rigorous process development to yield therapeutics of sufficient quality for use in human clinical trials.
 
CI has established a robust support team comprising the regulatory, cGMP manufacturing and clinical trials infrastructure to conduct first-in-human clinical exploration under Food and Drug Administration (FDA)-authorized investigational new drugs (INDs). We established the Clinical Immunobiology Correlative Studies Laboratory for the purpose of generating data from treated patients and, using validated assay platforms, informing our translational and basic scientists of clinically relevant immunobiology that impacts therapeutic efficacy and safety.
 
CI has three major components: (i) basic tumor immunology, (ii) antibody-based immunotherapeutics and (iii) cell-based immunotherapeutics. Program research spans understanding basic principles of immunologic escape by tumors, engineering of antibodies and antibody fragments for radioimmunotherapy, imaging and the derivation of immunocytokines, use of viral vectors for tumor vaccines and genetic engineering of T cell s for adoptive immunotherapy.
 
INDs and Clinical Protocols
  • The CI Program's growing portfolio of active FDA INDs covers a variety of genetic engineering products, recombinant antibody proteins and genetically modified cells.
  • FDA-authorized clinical protocols cover a growing number of patient populations, including those with CEA-expressing carcinomas (colorectal and breast), prostate cancer, glioma, lymphoma and childhood neuroblastoma.
  • In the next few years, additional protocols for lung cancer, ovarian cancer, leukemias and pediatric embryonal brain tumors will be added, and multimodality immunotherapy protocols will commence.
 
Program Goals
  • Develop and improve lymphocyte genetic engineering and adoptive T cell transfer-based immunotherapy for oncologic disease
  • Develop molecularly-targeted therapies to overcome tumor-induced immune suppression, thereby enhancing the efficacies of cell- and antibody-based immunotherapeutic modalities
  • Develop novel antibody-based therapeutics for imaging and treatment of both solid tumors and hematopoietic malignancies
 
CI Members' Research
Members of the CI Program have expertise in the specialized areas of cancer immunotherapy and tumor immunology. Of particular interest to this program are the fields of antibody-based radioimmunotherapy, cell- and vaccine-based immunotherapeutics, immunopharmacologic drugs, signaling between tumor and immune cells in the tumor microenvironment, tumor-induced immune suppression, and phase I and II clinical trials. Knowledge gained from these studies is applied toward development of innovative, multimodality cancer therapeutics to enhance immune responses against tumor cells.
 

Immunotherapeutics (CI) Program

Cancer Immunotherapeutics Program

Peter P. Lee, M.D., Co-leader
Hua Yu, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The Cancer Immunotherapeutics (CI) Program is focused on discovery and application to clinical practice of efficacious and minimally toxic immunotherapeutic interventions for cancer. The long-term goal of the CI Program is to develop insights made by tumor immunologists into novel therapeutic approaches in preclinical model systems, which are then taken through rigorous process development to yield therapeutics of sufficient quality for use in human clinical trials.
 
CI has established a robust support team comprising the regulatory, cGMP manufacturing and clinical trials infrastructure to conduct first-in-human clinical exploration under Food and Drug Administration (FDA)-authorized investigational new drugs (INDs). We established the Clinical Immunobiology Correlative Studies Laboratory for the purpose of generating data from treated patients and, using validated assay platforms, informing our translational and basic scientists of clinically relevant immunobiology that impacts therapeutic efficacy and safety.
 
CI has three major components: (i) basic tumor immunology, (ii) antibody-based immunotherapeutics and (iii) cell-based immunotherapeutics. Program research spans understanding basic principles of immunologic escape by tumors, engineering of antibodies and antibody fragments for radioimmunotherapy, imaging and the derivation of immunocytokines, use of viral vectors for tumor vaccines and genetic engineering of T cell s for adoptive immunotherapy.
 
INDs and Clinical Protocols
  • The CI Program's growing portfolio of active FDA INDs covers a variety of genetic engineering products, recombinant antibody proteins and genetically modified cells.
  • FDA-authorized clinical protocols cover a growing number of patient populations, including those with CEA-expressing carcinomas (colorectal and breast), prostate cancer, glioma, lymphoma and childhood neuroblastoma.
  • In the next few years, additional protocols for lung cancer, ovarian cancer, leukemias and pediatric embryonal brain tumors will be added, and multimodality immunotherapy protocols will commence.
 
Program Goals
  • Develop and improve lymphocyte genetic engineering and adoptive T cell transfer-based immunotherapy for oncologic disease
  • Develop molecularly-targeted therapies to overcome tumor-induced immune suppression, thereby enhancing the efficacies of cell- and antibody-based immunotherapeutic modalities
  • Develop novel antibody-based therapeutics for imaging and treatment of both solid tumors and hematopoietic malignancies
 
CI Members' Research
Members of the CI Program have expertise in the specialized areas of cancer immunotherapy and tumor immunology. Of particular interest to this program are the fields of antibody-based radioimmunotherapy, cell- and vaccine-based immunotherapeutics, immunopharmacologic drugs, signaling between tumor and immune cells in the tumor microenvironment, tumor-induced immune suppression, and phase I and II clinical trials. Knowledge gained from these studies is applied toward development of innovative, multimodality cancer therapeutics to enhance immune responses against tumor cells.
 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Clinical Trials
Our aggressive pursuit to discover better ways to help patients now – not years from now – places us among the leaders worldwide in the administration of clinical trials.
 
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Discover the wide range of progressive cancer treatment options at City of Hope designed to meet the individual needs of each patient. Here, medical research and clinical care are integrated, speeding the application of scientific discoveries toward better, more effective patient cancer treatments.
City of Hope Breakthroughs
Get the latest in City of Hope's research, treatment and news you can use on our blog, Breakthroughs.
 
 
When you support City of Hope, you help us shorten the time it takes to get from bold, innovative ideas to powerful new medical treatments. Make a gift online now.


NEWS & UPDATES
  • The outlook and length of survival has not changed much in the past 25 years for patients suffering from an aggressive form of pancreatic cancer known as pancreatic ductal adenocarcinoma (PDAC). These patients still have few options for therapy; currently available therapies are generally toxic and do not incre...
  • “With bladder cancer, the majority of patients that I see can be cured,” said urologist Kevin Chan, M.D., head of reconstructive urology at City of Hope. “The challenge is to get patients the same quality of life that they had before surgery.” To meet this challenge, Chan and the urologic team at City of Hope [...
  • Already pioneers in the use of immunotherapy, City of Hope researchers are now testing the bold approach to cancer treatment against one of medicine’s biggest challenges: brain cancer. This month, they will launch a clinical trial using patients’ own modified T cells to fight advanced brain tumors. One of but a...
  • Brain cancer may be one of the most-frightening diagnoses people can receive, striking at the very center of who we are as individuals. Further, it often develops over time, causing no symptoms until it’s already advanced. Listen to City of Hope Radio as Behnam Badie, M.D., director of the Brain Tumor Pro...
  • The whole is greater than the sum of its parts. It takes a village. No man is an island. Choose your aphorism: It’s a simple truth that collaboration usually is better than isolation. That’s especially true when you’re trying to introduce healthful habits and deliver health care to people at risk of disease and...
  • When Maryland Governor Larry Hogan announced earlier this week that he has the most common form of non-Hodgkin lymphoma, he was giving voice to the experience of more than 71,000 Americans each year. The announcement came with Hogan’s promise to stay in office while undergoing aggressive treatment for the...
  • The spine can be affected by many different kinds of tumors. Malignant, or cancerous, tumors can arise within the spine itself. Secondary spinal tumors, which are actually much more common, begin as cancers in another part of the body, such as the breast and prostate, and then spread, or metastasize, to the spi...
  • Although most cancer occurs in older adults, the bulk of cancer research doesn’t focus on this vulnerable and fast-growing population. City of Hope and its Cancer and Aging Research Team aim to change that, and they’re getting a significant boost from Professional Practice Leader Peggy Burhenn, R.N....
  • Liz Graef-Larcher’s first brain tumor was discovered by accident six years ago. The then-48-year-old with a long history of sinus problems and headaches had been sent for an MRI, and the scan found a lesion in her brain called a meningioma – a tumor that arises in the meninges, the layers of tissue that cover a...
  • The colon and rectum are parts of the body’s gastrointestinal system, also called the digestive tract. After food is digested in the stomach and nutrients are absorbed in the small intestine, the remaining material moves down into the lower large intestine (colon) where water and nutrients are absorbed. The low...
  • If there is one truism about hospital stays it is that patients want to get out. For many, however, the joy of being discharged is tempered by the unexpected challenges that recovery in a new setting may pose. Even with professional help, the quality of care and treatment that patients receive at City of Hope [...
  • Jana Portnow, M.D., associate director of the Brain Tumor Program at City of Hope, didn’t expect to specialize in treating brain tumors. But, early in her career, she undertook a year of research on pain management and palliative care and, in that program, got to know many patients with brain tumors. After that...
  • Ask any patient: Nurses are as pivotal in their care as doctors. They answer the call of a patient in the middle of the night, they hold the patient’s hand as he or she takes on yet another round of treatment and, in the best-case scenario, they wave goodbye as the patient leaves the hospital, […]
  • Many oncologists, not to mention their patients, might think that there’s no place for mathematical analysis in the treatment of cancer. They might think that all treatment decisions are based on unique factors affecting individual patients, with no connection to other patients and their treatment regimen...
  • Within three days in 2007, Stephanie Hosford, then 37, learned that she was pregnant with her long-awaited second child – and that she had triple-negative breast cancer. Soon afterward, Hosford discovered that she and her husband, Grant, had been approved to adopt a little girl from China.  After encountering m...