A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular Oncology (MONC) Program Bookmark and Share

Molecular Oncology (MONC) Program

Emily Wang, Ph.D., Co-leader
Binghui Shen, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The overall scientific vision of theMolecularOncologyProgram (MONC)is to investigate fundamental DNA and RNA biology for the purpose of understanding basic mechanisms of cancer and ultimately identifying potential new therapeutic approaches. The major emphasis is on understanding the biology of cancer cells, which is accomplished by investigating the development of cancer, studying the biological mechanisms of cancer development, discovering information on key targets for cancer therapy, and developing advanced technologies used in cancer research.
 
Investigations into the mechanisms of DNA damage and repair mechanisms form one foundation of this program and are relevant to cancer development. Changes in cellular gene expression that accompany tumor growth are equally important to cancer progression. Studies of DNA methylation and epigenetics represent a second strong component of the program. Investigators studying transcriptional and post-transcriptional mechanisms of gene regulation contribute yet another dimension to this program. Changes in gene expression during cancer cell progression can result in a variety of events that promote uncontrolled cellular growth. These include altered splicing patterns and disregulation of the microRNA population, both of which lead to additional alterations in gene expression. Nuclear receptors and transcription factors have traditionally been important chemotherapeutic targets; theMolecular Oncologyprogram includes a group of investigators studying these important macromolecules and their ligands.

Program Goals
  • Understand the relationship between DNA damage and repair, mutagenesis, and carcinogenesis at the molecular level.
  • Investigate the fundamental processes underlying gene regulation, epigenetics and RNA biology during cell lineage commitment and tumor formation.
 
Members' Research
Members of theMolecular OncologyProgram have expertise in diverse areas of basic cancer biology that include chromatin structure, receptor-mediated control of gene expression, regulation of transcription by tissue- and cell-specific transcription factors, small drug interactions with and modulation of DNA and RNA function, cell signaling mechanisms, regulation of RNA processing, and the use of epigenetic tools such as siRNA and ribozymes to modulate gene expression. These basic science studies provide the foundation for future development of novel approaches to cancer therapy by the DCT, CI and HM Programs.
 

Molecular Oncology (MONC) Program

Molecular Oncology (MONC) Program

Emily Wang, Ph.D., Co-leader
Binghui Shen, Ph.D., Co-leader
Program Members -If you would like an updated membership list, please contact Kim Lu at kilu@coh.org.
 
The overall scientific vision of theMolecularOncologyProgram (MONC)is to investigate fundamental DNA and RNA biology for the purpose of understanding basic mechanisms of cancer and ultimately identifying potential new therapeutic approaches. The major emphasis is on understanding the biology of cancer cells, which is accomplished by investigating the development of cancer, studying the biological mechanisms of cancer development, discovering information on key targets for cancer therapy, and developing advanced technologies used in cancer research.
 
Investigations into the mechanisms of DNA damage and repair mechanisms form one foundation of this program and are relevant to cancer development. Changes in cellular gene expression that accompany tumor growth are equally important to cancer progression. Studies of DNA methylation and epigenetics represent a second strong component of the program. Investigators studying transcriptional and post-transcriptional mechanisms of gene regulation contribute yet another dimension to this program. Changes in gene expression during cancer cell progression can result in a variety of events that promote uncontrolled cellular growth. These include altered splicing patterns and disregulation of the microRNA population, both of which lead to additional alterations in gene expression. Nuclear receptors and transcription factors have traditionally been important chemotherapeutic targets; theMolecular Oncologyprogram includes a group of investigators studying these important macromolecules and their ligands.

Program Goals
  • Understand the relationship between DNA damage and repair, mutagenesis, and carcinogenesis at the molecular level.
  • Investigate the fundamental processes underlying gene regulation, epigenetics and RNA biology during cell lineage commitment and tumor formation.
 
Members' Research
Members of theMolecular OncologyProgram have expertise in diverse areas of basic cancer biology that include chromatin structure, receptor-mediated control of gene expression, regulation of transcription by tissue- and cell-specific transcription factors, small drug interactions with and modulation of DNA and RNA function, cell signaling mechanisms, regulation of RNA processing, and the use of epigenetic tools such as siRNA and ribozymes to modulate gene expression. These basic science studies provide the foundation for future development of novel approaches to cancer therapy by the DCT, CI and HM Programs.
 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Clinical Trials
Our aggressive pursuit to discover better ways to help patients now – not years from now – places us among the leaders worldwide in the administration of clinical trials.
 
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Discover the wide range of progressive cancer treatment options at City of Hope designed to meet the individual needs of each patient. Here, medical research and clinical care are integrated, speeding the application of scientific discoveries toward better, more effective patient cancer treatments.
City of Hope Breakthroughs
Get the latest in City of Hope's research, treatment and news you can use on our blog, Breakthroughs.
 
 
When you support City of Hope, you help us shorten the time it takes to get from bold, innovative ideas to powerful new medical treatments. Make a gift online now.
NEWS & UPDATES
  • Ryan Chavira was a senior in high school when she began feeling sluggish, fatigued and, well, “down.” Trips to the doctor ended in “you’re fine” pronouncements; blood tests results showed nothing of real concern. But Chavira’s grandmother had passed away from ovarian cancer when she was in eig...
  • Brain tumors are exceptionally difficult to treat. They can be removed surgically, but individual cancer cells may have already spread elsewhere in the brain and can escape the effects of both radiation and chemotherapy. To prevent tumors from recurring, doctors need a way to find and stop those invasive cancer...
  • Breast cancer risk is personal; breast cancer risk assessment should be, too. To that end, City of Hope researchers have developed a starting point to help women (and their doctors) with a family history of the disease begin that risk assessment process. The result is an iPhone app, called BRISK, for Breast Can...
  • When it comes to breast cancer, women aren’t limited to getting screened and, if diagnosed, making appropriate treatment choices. They can also take a proactive stance in the fight against breast cancer by understanding key risk factors and practicing lifestyle habits that can help reduce their own breast...
  • Cancers of the blood and immune system are considered to be among the most difficult-to-treat cancers. A world leader in the treatment of blood cancers, City of Hope is now launching an institute specifically focused on treating people with lymphoma, leukemia and myeloma, as well as other serious blood and bone...
  • Genetics, genes, genome, genetic risk … Such terms are becoming increasingly familiar to even nonresearchers as studies and information about the human make-up become more extensive and more critical. At City of Hope, these words have long been part of our vocabulary. Researchers and physicians are studyi...
  • Mammograms are currently the best method to detect breast cancer early, when it’s easier to treat and before it’s big enough to feel or cause symptoms. But recent mammogram screening guidelines may have left some women confused about when to undergo annual testing. Here Lusi Tumyan, M.D., chief of t...
  • Although chemotherapy can be effective in treating cancer, it can also exact a heavy toll on a patient’s health. One impressive alternative researchers have found is in the form of a vaccine. A type of immunotherapy, one part of the vaccine primes the body to react strongly against a tumor; the second part dire...
  • The breast cancer statistic is attention-getting: One in eight women will be diagnosed with breast cancer during her lifetime. That doesn’t mean that, if you’re one of eight women at a dinner table, one of you is fated to have breast cancer (read more on that breast cancer statistic), but it does mean that the ...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. In his first post, ...
  • Advanced age tops the list among breast cancer risk factor for women. Not far behind is family history and genetics. Two City of Hope researchers delving deep into these issues recently received important grants to advance their studies. Arti Hurria, M.D., director of the Cancer and Aging Research Program, and ...
  • City of Hope is extending the reach of its lifesaving mission well beyond U.S. borders. To that end, three distinguished City of Hope leaders visited China earlier this year to lay the foundation for the institution’s new International Medicine Program. The program is part of City of Hope’s strategi...
  • A hallmark of cancer is that it doesn’t always limit itself to a primary location. It spreads. Breast cancer and lung cancer in particular are prone to spread, or metastasize, to the brain. Often the brain metastasis isn’t discovered until years after the initial diagnosis, just when patients were beginning to ...
  • Blueberries, cinnamon, baikal scullcap, grape seed extract (and grape skin extract), mushrooms, barberry, pomegranates … all contain compounds with the potential to treat, or prevent, cancer. Scientists at City of Hope have found tantalizing evidence of this potential and are determined to explore it to t...
  • Most women who are treated for breast cancer with a mastectomy do not choose to undergo reconstructive surgery. The reasons for this, according to a recent JAMA Surgery study, vary. Nearly half say they do not want any additional surgery, while nearly 34 percent say breast cancer reconstruction simply isn’t imp...