A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Wang, Emily, Ph.D. Bookmark and Share

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 

Wang, Emily, Ph.D.

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • No one ever plans to have cancer – and there’s never a good time. For Homa Sadat, her cancer came at a particularly bad time: just one year after losing her father to the pancreatic cancer he had battled for two years. She was working a grueling schedule managing three commercial office buildings. She’d just [&...
  • Patients at City of Hope – most of whom are fighting cancer – rely on more than 37,000 units of blood and platelets each year for their treatment and survival. Every one of those units comes from family, friends or someone who traded an hour or so of their time and a pint of their […]
  • Surgery is vital in the treatment of cancer – it’s used to help diagnose, treat and even prevent the disease – so a new colorectal cancer study linking a decrease in surgeries for advanced cancer to increased survival rates may raise more questions than it answers for some patients. The surgery-and-surviv...
  • Age is the single greatest risk factor overall for cancer; our chances of developing the disease rise steeply after age 50. For geriatric oncology nurse Peggy Burhenn, the meaning is clear: Cancer is primarily a geriatric condition. That’s why she is forging inroads in the care of older adults with cancer. Burh...
  • One of American’s great sportscasters, Stuart Scott, passed away from recurrent cancer of the appendix at the young age of 49. His cancer was diagnosed when he was only 40 years old. It was found during an operation for appendicitis. His courageous fight against this disease began in 2007, resumed again with an...
  • When Homa Sadat found a lump in her breast at age 27, her gynecologist told her what many doctors say to young women: You’re too young to have breast cancer. With the lump dismissed as a harmless cyst, she didn’t think about it again until she was at a restaurant six months later and felt […]
  • What most people call a “bone marrow transplant” is not actually a transplant of bone marrow; it is instead the transplantation of what’s known as hematopoietic stem cells. Such cells are often taken from bone marrow, but not always. Hematopoietic stem cells are simply immature cells that can ...
  • Doctors have long known that women with a precancerous condition called atypical hyperplasia have an elevated risk of breast cancer. Now a new study has found that the risk is more serious than previously thought. Hyperplasia itself is an overgrowth of cells; atypical hyperplasia is an overgrowth in a distorted...
  • Don’t kid yourself. Just because it’s mid-January doesn’t mean it’s too late to make resolutions for a happier, and healthier, 2015. Just consider them resolutions that are more mature than those giddy, sometimes self-deluded, Jan. 1 resolutions. To that end, we share some advice from Cary A. Presant, M.D., an ...
  • Sales and marketing executive Jim Murphy first came to City of Hope in 2002 to donate blood for a friend who was being treated for esophageal cancer. The disease is serious. Although esophageal cancer accounts for only about 1 percent of cancer diagnoses in the U.S., only about 20 percent of patients survive at...
  • Aaron Bomar and his family were celebrating his daughter’s 33rd birthday in September 2014 when he received alarming news: According to an X-ray taken earlier that day at an urgent care facility, he had a node on his aorta and was in danger of an aneurysm. Bomar held hands with his wife and daughter and s...
  • Explaining a prostate cancer diagnosis to a young child can be difficult — especially when the cancer is incurable. But conveying the need for prostate cancer research, as it turns out, is easily done. And that leads to action. Earlier this year, Gerald Rustad, 71, who is living with a very aggressive form of m...
  • Cancer and its treatment can create unexpected daily challenges for patients. Side effects from chemotherapy, surgery and radiation therapy as well as the disease itself can cause difficulty in everything from speech to movement to eating. When this happens, rehabilitation is vital; it helps patients restore th...
  • Betsy Sauer and her four daughters share plenty in common. They’re smart and successful.  They’re funny, ranging from wryly witty to wickedly hilarious. Their hobbies tend toward the active and adventurous: hiking, rock climbing, skiing, swimming, fishing, kayaking, yoga and horseback riding. Also, they take he...
  • Flu season is upon us, and few people should take the risk of infection more seriously than cancer patients and their loved ones and caregivers. With the federal Centers for Disease Control and Prevention warning of widespread influenza outbreaks, it’s clear that flu season – and the associated risks – won’t en...