A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Wang, Emily, Ph.D. Bookmark and Share

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 

Wang, Emily, Ph.D.

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The outlook and length of survival has not changed much in the past 25 years for patients suffering from an aggressive form of pancreatic cancer known as pancreatic ductal adenocarcinoma (PDAC). These patients still have few options for therapy; currently available therapies are generally toxic and do not incre...
  • “With bladder cancer, the majority of patients that I see can be cured,” said urologist Kevin Chan, M.D., head of reconstructive urology at City of Hope. “The challenge is to get patients the same quality of life that they had before surgery.” To meet this challenge, Chan and the urologic team at City of Hope [...
  • Already pioneers in the use of immunotherapy, City of Hope researchers are now testing the bold approach to cancer treatment against one of medicine’s biggest challenges: brain cancer. This month, they will launch a clinical trial using patients’ own modified T cells to fight advanced brain tumors. One of but a...
  • Brain cancer may be one of the most-frightening diagnoses people can receive, striking at the very center of who we are as individuals. Further, it often develops over time, causing no symptoms until it’s already advanced. Listen to City of Hope Radio as Behnam Badie, M.D., director of the Brain Tumor Pro...
  • The whole is greater than the sum of its parts. It takes a village. No man is an island. Choose your aphorism: It’s a simple truth that collaboration usually is better than isolation. That’s especially true when you’re trying to introduce healthful habits and deliver health care to people at risk of disease and...
  • When Maryland Governor Larry Hogan announced earlier this week that he has the most common form of non-Hodgkin lymphoma, he was giving voice to the experience of more than 71,000 Americans each year. The announcement came with Hogan’s promise to stay in office while undergoing aggressive treatment for the...
  • The spine can be affected by many different kinds of tumors. Malignant, or cancerous, tumors can arise within the spine itself. Secondary spinal tumors, which are actually much more common, begin as cancers in another part of the body, such as the breast and prostate, and then spread, or metastasize, to the spi...
  • Although most cancer occurs in older adults, the bulk of cancer research doesn’t focus on this vulnerable and fast-growing population. City of Hope and its Cancer and Aging Research Team aim to change that, and they’re getting a significant boost from Professional Practice Leader Peggy Burhenn, R.N....
  • Liz Graef-Larcher’s first brain tumor was discovered by accident six years ago. The then-48-year-old with a long history of sinus problems and headaches had been sent for an MRI, and the scan found a lesion in her brain called a meningioma – a tumor that arises in the meninges, the layers of tissue that cover a...
  • The colon and rectum are parts of the body’s gastrointestinal system, also called the digestive tract. After food is digested in the stomach and nutrients are absorbed in the small intestine, the remaining material moves down into the lower large intestine (colon) where water and nutrients are absorbed. The low...
  • If there is one truism about hospital stays it is that patients want to get out. For many, however, the joy of being discharged is tempered by the unexpected challenges that recovery in a new setting may pose. Even with professional help, the quality of care and treatment that patients receive at City of Hope [...
  • Jana Portnow, M.D., associate director of the Brain Tumor Program at City of Hope, didn’t expect to specialize in treating brain tumors. But, early in her career, she undertook a year of research on pain management and palliative care and, in that program, got to know many patients with brain tumors. After that...
  • Ask any patient: Nurses are as pivotal in their care as doctors. They answer the call of a patient in the middle of the night, they hold the patient’s hand as he or she takes on yet another round of treatment and, in the best-case scenario, they wave goodbye as the patient leaves the hospital, […]
  • Many oncologists, not to mention their patients, might think that there’s no place for mathematical analysis in the treatment of cancer. They might think that all treatment decisions are based on unique factors affecting individual patients, with no connection to other patients and their treatment regimen...
  • Within three days in 2007, Stephanie Hosford, then 37, learned that she was pregnant with her long-awaited second child – and that she had triple-negative breast cancer. Soon afterward, Hosford discovered that she and her husband, Grant, had been approved to adopt a little girl from China.  After encountering m...