A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Wang, Emily, Ph.D. Bookmark and Share

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 

Wang, Emily, Ph.D.

Laboratory of S. Emily Wang, Ph.D.

Outsmarting Breast Cancer
Breast carcinogenesis is a multi-event process that occurs in a dynamic microenvironment. Unlike normal differentiated cells whose functions are under tight regulation, cancer cells are multitasking as a result of the hyperactivation of multiple intracellular signaling pathways and loss of tumor suppressors. In cancer cells, these pathways do not respond to normal regulatory signals but are manipulated simultaneously by more than one oncogenic signals. Besides these alterations in cancer cells, modification of the extracellular matrix and transformation of the stromal tissues are also involved in tumor progression and metastasis. Therefore, our rationale to suppress tumor progression includes: 1) simultaneous targeting of key oncogenic pathways expressed in cancer cells, and 2) targeting microenvironmental modifications that result from the crosstalk between oncogenic signaling networks in cancer cells.

Micromanagement of cancer translatome by microRNAs
MicroRNAs (miRNAs) are naturally occurring non-coding small RNA molecules of 21-24 nucleotides that can base pair to 3’UTR sites in the messenger RNAs (mRNAs) of protein-coding genes. Consistent with their regulatory function, miRNAs are crucial for development, differentiation, proliferation and apoptosis. In animals, each miRNA can downregulate the expression from hundreds of target mRNAs via mRNA degradation or block of translation. MiRNAs are frequently dysregulated in human cancers, and have shown promise as tissue-based markers for cancer classification and prognostication. Our group is actively investigating the mechanisms of miRNA dysregulation in breast cancer.

Developing novel microRNA blood markers of breast cancer
MiRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Assessment of circulating miRNA profiles from breast cancer patients and correlation of these profiles with tumor traits (e.g., chemotherapy response) are therefore of great clinical interest. We have carried out discovery profiling of circulating small RNAs by deep sequencing using the pre-treatment sera of stage II–III breast cancer patients. More than 800 miRNA species were detected and exhibited patterns associated with the histopathological and molecular profiles of breast cancer. Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for the clinical outcomes of breast cancer, and developing miRNA blood markers may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Co-evolution of the tumor microenvironment and cancer stem cells (CSCs)
The critical roles of CSCs in cancer initiation, progression and therapeutic refractoriness have emerged in recent studies. Their regulation by factors in the tumor microenvironment, however, remains largely uncharacterized. Our group focuses on various environmental elements, such as the stromal fibroblasts, for their effect on breast cancer stem cells. We show that compared to normal fibroblasts, primary cancer-associated fibroblasts produce higher levels of chemokine (C-C motif) ligand 2 (CCL2), which stimulates the stem-cell-specific, sphere-forming phenotype in breast cancer cells and CSC self-renewal. Increased CCL2 expression in activated fibroblasts requires STAT3 activation by diverse cancer-secreted cytokines, and in turn, induces NOTCH1 expression and the CSC features in breast cancer cells, constituting a “cancer-stroma-cancer” signaling circuit. Our results are supported by a xenograft model of paired fibroblasts and tumor cells from primary human breast cancer. Regulation of NOTCH1 by CCL2 is further supported by a significant correlation between the expression profiles of the two genes in primary breast cancers, where upregulation of both genes is associated with poor differentiation. We are currently exploring the role of CCL2, STAT3 and NOTCH1 as potential therapeutic targets to block the cancer-host communication that prompts CSC-mediated disease progression and treatment resistance.
 
For more information on Dr. Wang, please click here.
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Repr...
  • When 25-year-old Angelina Mattos was diagnosed with Stage 4 oral cancer earlier this year, she learned that her only hope of survival was through the removal of her tongue, a surgery that leaves people without the ability to talk or eat normally, sometimes permanently ending their ability to speak. After hearin...
  • Two years ago, Joselyn Miller and her family sat together as stem cells from her brother’s bone marrow were infused into her – a precious gift of life that the family is excited to have the chance to pass to another patient in need. Today, the stem cell recipient is healthy. Her 23-year-old son Rex, who […...
  • Even as the overall rate of oral cancers in the United States steadily declines, the rate of tongue cancer is increasing — especially among white females ages 18 to 44. An oral cancer diagnosis, although rare, is serious. Only half of the people diagnosed with oral cancer are still alive after five years, accor...
  • Sometimes cancer found in the lungs is not lung cancer at all. It can be another type of cancer that originated elsewhere in the body and spread, or metastasized, to the lungs through the bloodstream or lymphatic system. These tumors are called lung metastases, or metastatic cancer to the lungs, and are not the...
  • When it comes to research into the treatment of hematologic cancers, City of Hope scientists stand out. One study that  they presented this week at the annual meeting of the American Society of Hematology suggests a new standard of care for HIV-associated lymphoma, another offers promise for the treatment of re...
  • Patients with HIV-associated lymphoma may soon have increased access to the current standard of care for some non-HIV infected patients – autologous stem cell transplants. Impressive new data, presented Monday at the annual meeting of the American Society of Hematology (ASH) in San Francisco, indicate that HIV-...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the Rose Parade is “Inspiring Stories.”...
  • The holidays can create an overwhelming urge to give to people in need — especially to sick children and families spending the holidays in a hospital room. That’s a good thing. Holiday donations of toys and gifts can bolster the spirits, and improve the lives, of people affected by illness, and hospitals ...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Here...
  • Cancer has a way of “talking” to the immune system and corrupting it to work on its own behalf instead of defending the body. Blocking this communication would allow the immune system to see cancer cells for what they are – something to be fought off – and stop them from growing. A breakthrough Scientists [R...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” By V...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” The ...
  • On Jan. 1, 2015, six City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” In 2...
  • You’ve done the easy stuff – braved the toy store and the Black Friday frenzy, stayed up all night trolling deals online, picked up gift cards for your colleagues at work. There’s just one gift left, the one you’ve been putting off and the one that means so much. What do you give your friend who […]