A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
X-ray Crystallography Core Facility Bookmark and Share

X-ray Crystallography Core Facility

The X-ray Crystallography Core Facility is one of the Shared Resources facilities at Beckman Research Institute of City of Hope.

The objectives of the facility are:
  1. Provide structural and biophysical information to understand mechanisms of biological systems at the atomic level
  2. Validate binding sites of lead compounds of therapeutic interest
  3. Facilitate lead discovery through co-crystallization of therapeutic targets and small molecule libraries

Services provided include:
  • Protein Expression and Purification
  • Biophysical Characterization of macromolecules and small molecules
  • Crystallization
  • Diffraction quality
  • Data collections
  • Structure determination
 
 
Research reported in this publication includes work performed in the X-ray Crystallography Core supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Assessment of authorship will be determined by the level of intellectual input, assay design and data analysis provided by Core leadership and staff members for each project individually based on NIH authorship guidelines.

Services

The X-ray crystallography Core provides a state-of-the-art facility for the generation of crystals and structure determination of macromolecules including proteins, DNA, RNA, and complexes between macromolecules and their ligands.  To complement structural data, the core provides state-of-the-art instrumentation to measure the affinities and kinetics of macromolecules with ligands and/or other macromolecules.  Finally, the core has assembled a 1250 member, fragment library to screen for potential lead compounds through differential scanning fluorimetry, SPR, ITC and diffraction methods.

Sample Analysis and Preparation

Consultation and in silico analysis
• Protein expression and purification (bacteria, insect or mammalian cell expression/ affinity or tag-less purification)
• Domain structure, including disorder and secondary structure prediction

Physical Analysis

• Native and SDS PAGE
• Limited Proteolysis and characterization by SDS-PAGE
• Size Exclusion Chromatography (analytical and preparative grade)
• Sedimentation Equilibrium analysis by Analytical Ultracentrifugation (AUC)
• Sedimentation Velocity analysis by AUC
• Surface Plasmon Resonance (SPR)
• Circular Dichroism (CD) Spectroscopy
• Isothermal Titration Calorimetry (ITC)
• Kinetic Exclusion Assay (KinExA)
• Differential Scanning Fluorimetry (DSF)

Crystallization

1. Set up crystallization trials at 4 ºC and/or 20 ºC.
a. Initial trials (e.g., appropriate concentrations)
b .Full scale trials (4 different 96 well factorials at 3 protein concentrations and 2 temperatures)

2. Optimization – additive screens, factorial overlays, macro and micro seeding

3. Automated imaging available for4 ºC and 20 ºC )

Diffraction quality

1. Test diffraction quality (loop and capillary mounting available)

2. Test/screen cryo-conditions

Data collection

1. Collect, reduce and merge data. Generate table of statistics
2. MAD/SAD phasing – help design, collect, reduce and merge MAD data
3. Generate table of statistics including anomalous dispersion differences

Structure Determination

1. Solve structure by Molecular Replacement
2. Solve structure by MAD/SAD phasing
3. Refine structure
4. Produce relevant statistics (e.g., R and Rfree, RMS deviations)
5. Structural analysis (superpositions, electrostatics, etc)
6. Deposit Structure at PDB
 

Equipment

The facility houses a Mosquito Crystallization Robot, a Formulatrix imaging robot (with Automated Crystal Screening at 4 ºC and 20 ºC), a Rigaku Micromax 007 with an R-AxisIV++, and an Oxford cryojet and relevant software and computational hardware for structure determination.
 
The facility also houses a Beckman XLI analytical ultracentrifuge and a GE Health Phast Gel system for the characterization of macromolecular properties.
 
Mosquito Crystallization Robot
The mosquito crystallization robot permits hanging drop, sitting drop, and batch methods in a 96 well format using minimal amounts of protein (~16mL/trail). A number of commercial crystallization screens are available (Qiagen, Hampton Research, Jena).
   
Formulatrix Automated Visualization of Crystallization Trials
The core houses two Formulatrix imaging robots for visualization at 4 ºC and 20 ºC.
Users can quickly browse images, score potential hits and follow crystal growth in time.
   
Rigaku X-ray Diffractometer
Micromax 007 HF, R-axis V++, and Oxford cryojets allow full structure determination.
   
Beckman XL-I Proteomelab
The Beckman Analytical ultracentrifuge affords accurate measurement of hydrodynamic properties, including the association constant of macromolecular complexes, as well as small molecule-macromolecular interactions
 
 

Abstract for Grants

The X-ray core at Beckman Research Institute of City of Hope is a state-of-the-art crystallization and X-ray facility for basic and translational science.  To facilitate investigators, the core also provides protein expression and purification as well as numerous biophysical methods to characterize stability, oligomerizaiton, and kinetic and thermodynamic properties.This facility houses a Mosquito Crystallization robot that uses 50 to 100 nL volumes and permits three different crystallization formats; hanging drop, sitting drops or batch methods under oil. The facility has multiple commercial crystallization factorials (e.g., Hampton, Jena, Nextal), To follow crystallization trials, two Formulatrix Imaging Robots at different temperatures are used that automatically image each drop, according to a preset schedule (e.g., nightly). This allows follow-up of crystallization trends at two temperatures and produces a visual record for analysis. A Rigaku 007HF generator,  R-axis IV++ imager and an Oxford cryojet (for data collection at 100 K) is used for in-house diffraction studies and access to SSRL and other synchrotrons is available The facility has all the software and computational hardware necessary to determine structures of macromolecular complexes.
 
In addition, our core facility has capabilities to express and purify large quantities of high quality protein (1 to 100 mg +) using a variety of expression systems (bacteria, insect and mammalian cells). Biophysical characterization of macromolecules and small molecules can be carried out using SPR, ITC, AUC, analytical SEC, KinExa and CD and fluorescent spectroscopy.
 

Pricing

Prices and availability vary. Please contact us or visit our site on iLab Solutions for current information.

 

 

X-ray Crystallography Core Facility

X-ray Crystallography Core Facility

The X-ray Crystallography Core Facility is one of the Shared Resources facilities at Beckman Research Institute of City of Hope.

The objectives of the facility are:
  1. Provide structural and biophysical information to understand mechanisms of biological systems at the atomic level
  2. Validate binding sites of lead compounds of therapeutic interest
  3. Facilitate lead discovery through co-crystallization of therapeutic targets and small molecule libraries

Services provided include:
  • Protein Expression and Purification
  • Biophysical Characterization of macromolecules and small molecules
  • Crystallization
  • Diffraction quality
  • Data collections
  • Structure determination
 
 
Research reported in this publication includes work performed in the X-ray Crystallography Core supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Assessment of authorship will be determined by the level of intellectual input, assay design and data analysis provided by Core leadership and staff members for each project individually based on NIH authorship guidelines.

Services

Services

The X-ray crystallography Core provides a state-of-the-art facility for the generation of crystals and structure determination of macromolecules including proteins, DNA, RNA, and complexes between macromolecules and their ligands.  To complement structural data, the core provides state-of-the-art instrumentation to measure the affinities and kinetics of macromolecules with ligands and/or other macromolecules.  Finally, the core has assembled a 1250 member, fragment library to screen for potential lead compounds through differential scanning fluorimetry, SPR, ITC and diffraction methods.

Sample Analysis and Preparation

Consultation and in silico analysis
• Protein expression and purification (bacteria, insect or mammalian cell expression/ affinity or tag-less purification)
• Domain structure, including disorder and secondary structure prediction

Physical Analysis

• Native and SDS PAGE
• Limited Proteolysis and characterization by SDS-PAGE
• Size Exclusion Chromatography (analytical and preparative grade)
• Sedimentation Equilibrium analysis by Analytical Ultracentrifugation (AUC)
• Sedimentation Velocity analysis by AUC
• Surface Plasmon Resonance (SPR)
• Circular Dichroism (CD) Spectroscopy
• Isothermal Titration Calorimetry (ITC)
• Kinetic Exclusion Assay (KinExA)
• Differential Scanning Fluorimetry (DSF)

Crystallization

1. Set up crystallization trials at 4 ºC and/or 20 ºC.
a. Initial trials (e.g., appropriate concentrations)
b .Full scale trials (4 different 96 well factorials at 3 protein concentrations and 2 temperatures)

2. Optimization – additive screens, factorial overlays, macro and micro seeding

3. Automated imaging available for4 ºC and 20 ºC )

Diffraction quality

1. Test diffraction quality (loop and capillary mounting available)

2. Test/screen cryo-conditions

Data collection

1. Collect, reduce and merge data. Generate table of statistics
2. MAD/SAD phasing – help design, collect, reduce and merge MAD data
3. Generate table of statistics including anomalous dispersion differences

Structure Determination

1. Solve structure by Molecular Replacement
2. Solve structure by MAD/SAD phasing
3. Refine structure
4. Produce relevant statistics (e.g., R and Rfree, RMS deviations)
5. Structural analysis (superpositions, electrostatics, etc)
6. Deposit Structure at PDB
 

Equipment

Equipment

The facility houses a Mosquito Crystallization Robot, a Formulatrix imaging robot (with Automated Crystal Screening at 4 ºC and 20 ºC), a Rigaku Micromax 007 with an R-AxisIV++, and an Oxford cryojet and relevant software and computational hardware for structure determination.
 
The facility also houses a Beckman XLI analytical ultracentrifuge and a GE Health Phast Gel system for the characterization of macromolecular properties.
 
Mosquito Crystallization Robot
The mosquito crystallization robot permits hanging drop, sitting drop, and batch methods in a 96 well format using minimal amounts of protein (~16mL/trail). A number of commercial crystallization screens are available (Qiagen, Hampton Research, Jena).
   
Formulatrix Automated Visualization of Crystallization Trials
The core houses two Formulatrix imaging robots for visualization at 4 ºC and 20 ºC.
Users can quickly browse images, score potential hits and follow crystal growth in time.
   
Rigaku X-ray Diffractometer
Micromax 007 HF, R-axis V++, and Oxford cryojets allow full structure determination.
   
Beckman XL-I Proteomelab
The Beckman Analytical ultracentrifuge affords accurate measurement of hydrodynamic properties, including the association constant of macromolecular complexes, as well as small molecule-macromolecular interactions
 
 

Abstract for Grants

Abstract for Grants

The X-ray core at Beckman Research Institute of City of Hope is a state-of-the-art crystallization and X-ray facility for basic and translational science.  To facilitate investigators, the core also provides protein expression and purification as well as numerous biophysical methods to characterize stability, oligomerizaiton, and kinetic and thermodynamic properties.This facility houses a Mosquito Crystallization robot that uses 50 to 100 nL volumes and permits three different crystallization formats; hanging drop, sitting drops or batch methods under oil. The facility has multiple commercial crystallization factorials (e.g., Hampton, Jena, Nextal), To follow crystallization trials, two Formulatrix Imaging Robots at different temperatures are used that automatically image each drop, according to a preset schedule (e.g., nightly). This allows follow-up of crystallization trends at two temperatures and produces a visual record for analysis. A Rigaku 007HF generator,  R-axis IV++ imager and an Oxford cryojet (for data collection at 100 K) is used for in-house diffraction studies and access to SSRL and other synchrotrons is available The facility has all the software and computational hardware necessary to determine structures of macromolecular complexes.
 
In addition, our core facility has capabilities to express and purify large quantities of high quality protein (1 to 100 mg +) using a variety of expression systems (bacteria, insect and mammalian cells). Biophysical characterization of macromolecules and small molecules can be carried out using SPR, ITC, AUC, analytical SEC, KinExa and CD and fluorescent spectroscopy.
 

Pricing

Pricing

Prices and availability vary. Please contact us or visit our site on iLab Solutions for current information.

 

 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Recognized nationwide for its innovative biomedical research, City of Hope's Beckman Research Institute is home to some of the most tenacious and creative minds in science.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
Media Inquiries/Social Media

For media inquiries contact:

Dominique Grignetti
800-888-5323
dgrignetti@coh.org

 

For sponsorships inquiries please contact:

Stefanie Sprester
213-241-7160
ssprester@coh.org

Christine Nassr
213-241-7112
cnassr@coh.org

 
CONNECT WITH US
Facebook  Twitter  YouTube  Blog
 
NEWS & UPDATES
  • Although chemotherapy can be effective in treating cancer, it can also exact a heavy toll on a patient’s health. One impressive alternative researchers have found is in the form of a vaccine. A type of immunotherapy, one part of the vaccine primes the body to react strongly against a tumor; the second part dire...
  • The breast cancer statistic is attention-getting: One in eight women will be diagnosed with breast cancer during her lifetime. That doesn’t mean that, if you’re one of eight women at a dinner table, one of you is fated to have breast cancer (read more on that breast cancer statistic), but it does mean that the ...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free. In his first post, ...
  • Advanced age tops the list among breast cancer risk factor for women. Not far behind is family history and genetics. Two City of Hope researchers delving deep into these issues recently received important grants to advance their studies. Arti Hurria, M.D., director of the Cancer and Aging Research Program, and ...
  • City of Hope is extending the reach of its lifesaving mission well beyond U.S. borders. To that end, three distinguished City of Hope leaders visited China earlier this year to lay the foundation for the institution’s new International Medicine Program. The program is part of City of Hope’s strategi...
  • A hallmark of cancer is that it doesn’t always limit itself to a primary location. It spreads. Breast cancer and lung cancer in particular are prone to spread, or metastasize, to the brain. Often the brain metastasis isn’t discovered until years after the initial diagnosis, just when patients were beginning to ...
  • Blueberries, cinnamon, baikal scullcap, grape seed extract (and grape skin extract), mushrooms, barberry, pomegranates … all contain compounds with the potential to treat, or prevent, cancer. Scientists at City of Hope have found tantalizing evidence of this potential and are determined to explore it to t...
  • Most women who are treated for breast cancer with a mastectomy do not choose to undergo reconstructive surgery. The reasons for this, according to a recent JAMA Surgery study, vary. Nearly half say they do not want any additional surgery, while nearly 34 percent say breast cancer reconstruction simply isn’t imp...
  • The leading risk factor for breast cancer is simply being a woman. The second top risk factor is getting older. Obviously, these two factors cannot be controlled, which is why all women should be aware of their risk and how to minimize those risks. Many risk factors can be mitigated, and simple changes can lead...
  • All women are at some risk of developing the disease in their lifetimes, but breast cancer, like other cancers, has a disproportionate effect on minorities. Although white women have the highest incidence of breast cancer, African-American women have the highest breast cancer death rates of all racial and ethni...
  • First, the good news: HIV infections have dropped dramatically over the past 30 years. Doctors, researchers and health officials have made great strides in preventing and treating the disease, turning what was once a death sentence into, for some, a chronic condition. Now, the reality check: HIV is still a worl...
  • Screening for breast cancer has dramatically increased the number of cancers found before they cause symptoms – catching the disease when it is most treatable and curable. Mammograms, however, are not infallible. It’s important to conduct self-exams, and know the signs and symptoms that should be checked by a h...
  • Rob Darakjian was diagnosed with acute lymphoblastic leukemia at just 19 years old. He began chemotherapy and was in and out of the hospital for four months. After his fourth round of treatment, he received a bone marrow transplantation from an anonymous donor. Today, he’s cancer free.   In his previ...
  • In a single day, former professional triathlete Lisa Birk learned she couldn’t have children and that she had breast cancer. “Where do you go from there?” she asks. For Birk, who swims three miles, runs 10 miles and cycles every day, the answer  ultimately was a decision to take control of her cancer care. Afte...
  • More and more people are surviving cancer, thanks to advanced cancer treatments and screening tools. Today there are nearly 14.5 million cancer survivors in the United States. But in up to 20 percent of cancer patients, the disease ultimately spreads to their brain. Each year, nearly 170,000 new cases of brain ...