Department of Diabetes Complications & Metabolism

-
Rama Natarajan Ph.D., FAHA, FASN: Battling Diabetic Complications: Diabetes is the leading cause of kidney failure and a significant risk factor for other complications such as atherosclerosis. Dr. Natarajan is working to determine molecular mechanisms and factors driving these complications and to develop strategies to prevent and reverse these complications. Her laboratory studies the role of epigenetics and non-coding RNAs (including microRNAs and long non-coding RNAs) in these pathologies using state-of-the-art sequencing technologies and bioinformatics, and they were one of the first to demonstrate the involvement of epigenetic changes and non-coding RNAs in diabetic complications. They are also evaluating translational approaches using small molecules and potential gene therapy/RNA interference to inhibit key genes associated with diabetic complications. Relevance to human diabetic complications is being assessed in clinical cohorts. She also examines the role of epigenetic mechanisms in the phenomenon of metabolic memory experienced by many diabetic patients, ie a memory of the high sugar and obesity states which persist long after sugar or weight loss. complications. The researchers'are current examining the molecular links between diabetes, obesity, metabolism, cancer and aging, including the role of various nuclear receptors.
-
David Ann, Ph.D.,Nutrition and Cancer Therapy: Metabolically overloaded cancer patients, in general, exhibit reduced survival after chemotherapy, suggesting an important role of nutrient utilization in disease progression. Dr. Ann’s laboratory has put arginine in the driver’s seat for tumor cell proliferation. They are investigating the roles of arginine in supporting mitochondrial oxidative phosphorylation (OxPhos), and studying how arginine regulates chromatin modifications and gene expression via mitochondria-nucleus crosstalk. Efforts will help to develop a protein-free artificial arginine-free diet to target canonical tumor growth in vivo. Restriction of just one amino acid (i.e., arginine) may be sufficient to kill many cancer cells of different tissues and genetic backgrounds.
-
Wendong Huang Ph.D., Molecular pathways regulating metabolism in diabetes and cancer. By using both genetically engineered mouse models and molecular pharmacological tools, Dr. Huang’s lab aims to identify novel targets for drug discovery. The current research projects focus on: 1). Identification of novel signaling molecules and pathways in regulating metabolism, diabetes and cancer. 2. Small molecules and RNA targeted therapy for diabetes and cancer.3. Mechanisms underlying bariatric surgery and diabetes therapy.
-
Ke Ma, M.D., Ph.D., Circadian clock-controlled epigenetic mechanisms. The broad goal of Dr. Ma’s research is to decipher the molecular pathways by which cell-autonomous clock circuits drive metabolic tissue growth and functional capacity, in order to uncover circadian etiologies underlying metabolic disorders for targeted therapeutic interventions. By combining biochemical and molecular biology approaches with whole-body animal physiology, Dr. Ma’s laboratory applies state-of-the-art technologies in circadian biology to metabolic disease research.
-
Dustin Schones, Ph.D., Chromatin modifications in metabolic diseases. The Schones lab is interested in chromatin modifications induced by environmental factors in metabolic diseases, including cancer, diabetes and obesity. They furthermore are examining how environmentally induced chromatin modifications depend on genetic factors. Their work underscores the importance of understanding not only general concepts that govern the human genome to influence phenotype/disease, but also how each individual genome responds to the environment leading to the development of disease.
-
Zhen Chen, Ph.D. Targeting Endothelial dysfunction. Dr. Chen’s lab is examining epigenetic mechanisms mediated by long non-coding RNA in chromatin remodeling and gene expression, and their functional relevance in vascular endothelium, one of the first sites of dysfunction in diabetes and cancer. They are studying hyperglycemia and hypoxia-responsive microRNA and long non-coding RNA in endothelial dysfunction and diabetic vascular complications. In addition, they are examining microRNA-mediated crosstalk between vascular endothelial cells and cancer cells, and the role of microRNA in the cardiorenal syndrome.
-
Andrei Rodin, Ph.D., Systems Biology/ Computational Biology. Dr. Rodin’s group is predominantly interested in developing and maintaining systems biology / computational biology data analysis methodology and software (with emphasis on mathematical rigour and adaptability to heterogeneous data types) directly applicable to the large-scale heterogeneous data being routinely generated within the current biomedical research pipelines. They collaborate with both internal (COH) and external investigators in applying such methodology to the big datasets ranging from genomic to epigenomic to just about any kind of -omic. They are also interested in developing mathematical models and flexible analysis techniques in the context of molecular evolution research.
Rama Natarajan, Ph.D.
National Business Products Industry Professor in Diabetes Research
Chair and professor, Department of Diabetes Complications & Metabolism, Diabetes and Metabolism Research Institute
Arthur D. Riggs, Ph.D.
Director, Diabetes Metabolic Research Institute
Director Emeritus, Beckman Research Institute
Professor, Department of Diabetes Complications & Metabolism
David Ann, Ph.D.
Professor, Department of Diabetes Complications & Metabolism
Wendong Huang, Ph.D.
Professor, Department of Diabetes Complications & Metabolism
Ke Ma, M.D., Ph.D.
Associate professor, Department of Diabetes Complications & Metabolism
Andrei Rodin, Ph.D.
Associate professor, Department of Diabetes Complications & Metabolism
Dustin Schones, Ph.D.
Assistant professor, Department of Diabetes Complications & Metabolism
Zhen Chen, Ph.D.
Assistant professor, Department of Diabetes Complications & Metabolism
- Diabetes Institute Departments