Molecular Medicine

The Department of Molecular Medicine within Beckman Research Institute of City of Hope advances translational medicine through breakthroughs in basic science using chemical biology and genomic approaches. Our investigators lead leading-edge research to determine the mechanisms underlying cancer and other serious diseases such as diabetes. The goal of the department is to customize prevention and treatment of such illnesses by developing targeted therapies for an individual’s genomic profile. Success produces more effective clinical responses to our treatments and less drug toxicity and resistance.
The department is composed of a carefully crafted team of experts in chemistry, biology, biochemistry and biophysics that identifies new target molecules to treat cancer, creates personalized medicines from natural products, develops bioorganic approaches for cancer therapy, and evaluates genomic markers to predict cancer risk and response to therapy. By collaborating with multidisciplinary groups that include basic, translational and clinical researchers throughout City of Hope, we transform our key findings into novel therapies that improve the quality of life for patients everywhere.
The department has a robust pipeline of novel, molecularly targeted therapeutics that includes engineered antibodies and small molecules. To facilitate the translation of these and other clinical candidates, the department is home to the Chemical GMP Synthesis Facility (CGSF),  which is a 3000-square-foot, state-of-the-art manufacturing facility where our small and large molecule therapeutics are prepared for Phase 1 and 2 clinical trials. The CGSF plays a key role in bridging basic science and translational medicine at City of Hope and allows for more efficient and cost-effective means to translate our science into clinical practice. We are able to bring promising new therapies to the patient faster and more effectively. 
To accomplish our mission, the Molecular Medicine team uses approaches and technologies that include:
  • Sophisticated organic synthesis and medicinal chemistry
  • High-tech protein engineering
  • Functional genomics, proteomics, and microarray gene expression profiling
  • High throughput screens of plant extracts and chemical libraries
  • Advanced NMR spectroscopy and computational modeling
  • State-of-the-art X-ray crystallography
  • Leading-edge super-resolution microscopy
These activities are supported by the Drug Discovery and Structural Biology (DDSB) Core, which is also housed in the department.

Laboratory Research

David Horne, Ph.D., - Synthetic/Medicinal Chemistry
Dr. Horne’s laboratory specializes in the synthesis of complex natural products and derivatives to develop molecularly targeted agents that are less toxic and more effective in treating the unmet needs in cancer and diabetes.
Robert Hickey, Ph.D. - Molecular Medicine
Development of selective diagnostic tools and therapeutic agents for improving the identification and treatment of a variety of cancers, with specific interest in the biochemical mechanisms leading to genormic instability and cancer development.
Tijana Jovanovic-Talisman, Ph.D. - Super-Resolution Microscopy
Dr. Jovanovic-Talisman’s research group employs novel, quantitative imaging techniques and nano-biological assays to investigate biological mechanisms and advance therapeutics.
Michael Kahn, Ph.D., Chair - Molecular Pharmacology
Dr. Kahn’s laboratory uses a forward chemical genomics strategy to study complex signaling pathways (Wnt, NF-KB, HIF etc.). The major focus of the lab over the past decade has been on differential Kat3 coactivator usage and how it affects normal somatic stem cell and cancer stem cell biology.
Keane Lai, M.D.Molecular Medicine
Dr. Lai’s research laboratory studies the molecular mechanisms underlying the development of hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) which are highly lethal cancers. The Lai Lab is particularly interested in dissecting the role of the Wnt/β-catenin signaling pathway (and related signaling pathways) and identifying novel therapeutic targets to combat HCC and PDAC.
John Termini, Ph.D. - Molecular Medicine
Members of Dr. Termini's laboratory are interested in understanding the role of DNA adducts in cancer. This encompasses mechanisms of formation, structure elucidation of novel adducts, quantitative determination in vivo, functional implications, and removal/repair.
John Williams, Ph.D. - X-ray Crystallography
Dr. Williams specializes in the use of X-ray crystallography to study protein-protein and drug-protein interactions for the design of novel therapeutic agents for the treatment of cancer.