Intellectual Property (Non-confidential)

NATIONAL MEDICAL CENTER AND BECKMAN RESEARCH INSTITUTE

Alternative to PCR

Pyrophosphorolysis Activated Polymerization (PAP-A) is a powerful technology that may be the foundation for the next generation of tools to study DNA. In PAP-A, two distinct steps (pyrophosphorolysis and polymerization) are serially coupled by the DNA polymerase enzyme PAP-A can be using an activating oligonucleotide. exponential amplification or linear applied to amplification. Unlike traditional PCR, PAP-A produces an exceptionally high level of selectivity and specificity. In PAP-A, nonspecific amplification requires two extremely rare events to occur (mismatch pyrophosphorolysis and nucleotide misincorporation); thus, PAP-A is nearly never incorrect. The extraordinary fidelity (~10⁻⁹) of PAP-A translates to increased accuracy and reliability for detecting extremely rare signals (even a single copy) amidst a high degree of noise.

KEY ASPECTS

- Novel and sensitive enzymatic approach to detect genetic mutations
- Orders of magnitude more specific and selective than PCR; and resistant to false-priming
- Ideally suited to detecting rare (low abundance) signals
- Potentially useful for early detection or new cancers or relapse, high fidelity genome sequencing, monitoring transplant engraftment/rejection and forensic applications, among many other fields.

INTELLECTUAL PROPERTY

Title	Patent Number	Origin	Issued
Pyrophosphorolysis activated polymerization (PAP)	7033763	US	4/25/2006
	7238480	US	7/3/2007
	2003/241401	AU	11/8/2007
	7504221	US	3/17/2009
	4500673	JP	4/23/2010
Pyrophosphorolysis activated polymerization (PAP): application to	6534269	US	3/18/2003 9/2/2009
allele-specific amplification and nucleic acid sequence	1259646 B1	EU	
determination	2001/241621 B2	AU	
Serial coupling of restriction cleavage and extension for nucleic acid amplification	7105298	US	9/12/2006

<u>CONTACT</u>

Ryan Kelly, Ph.D. Manager, Office of Technology Licensing Telephone: (626) 471 9359 | Email: rykelly@coh.org

This material is a summary of public domain and non-confidential City of Hope information. Additional material may be disclosed under a confidentiality agreement.