A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Aboody, Karen S., M.D. Bookmark and Share

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 

Aboody, Karen S., M.D.

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Lab Members

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • Many Americans understand that obesity is tied to heart disease and diabetes but, according to a new survey, too few – only 7 percent – know that obesity increases the risk of cancer. Specific biological characteristics can increase cancer risk in obese people, and multiple studies have shown correlations betwe...
  • As breast cancer survivors know, the disease’s impact lingers in ways both big and small long after treatment has ended. A new study suggests that weight gain – and a possible corresponding increase in heart disease and diabetes risk – may be part of that impact. In the first study to evaluate weight chan...
  • Becoming what’s known as an independent scientific researcher is no small task, especially when working to translate research into meaningful health outcomes. Yet that independent status is vital, enabling researchers to lead studies and avenues of inquiry that they believe to be promising. Clinicians, especial...
  • 720 days. That’s how long Alex Tung, 38, had to give up surfing after being diagnosed with acute myeloid leukemia. For most people, even some surfers, such a hiatus wouldn’t be a big deal, but for Tung, surfing has been everything. The Southern California resident began surfing when he was in elemen...
  • There are few among us who have not experienced loss of a friend or loved one, often without warning, or like those of us who care for people with cancer, after a lingering illness. It is a time when emotions run high and deep, and as time passes from the moment of loss, we often […]
  • For the past four years, neurosurgeon and scientist Rahul Jandial, M.D., Ph.D., has been studying how breast cancer cells spread, or metastasize, to the brain, where they become life-threatening tumors. Known as secondary brain tumors, these cancers have become increasingly common as treatment advances have ena...
  • Cutaneous T cell lymphomas are types of non-Hodgkin lymphoma that arise when infection-fighting white blood cells in the lymphatic system – called lymphocytes – become malignant and affect the skin. A primary symptom is a rash that arises initially in areas of the skin that are not normally exposed to sunlight....
  • There’s science camp, and then there’s “mystery” science camp. City of Hope’s new science camp for middle school students is of the especially engaging latter variety. From Monday, July 13, to Friday, July 17, rising middle-school students from across the San Gabriel Valley were presented with a “patient” with ...
  • Women diagnosed with breast cancer quickly learn their tumor’s type, meaning the characteristics that fuel its growth. That label guides the treatment of their disease, as well as their prognosis when it comes to treatment effectiveness. Sometimes, however, doctors can’t accurately predict treatment effectivene...
  • In years past, Bladder Cancer Awareness Month has been a sobering reminder of a disease with few treatment options. For patients with metastatic disease (disease that has spread from the bladder to distant organs), average survival is typically just over one year. Fortunately, things are changing. Academic inst...
  • Tina Wang was diagnosed with Stage 4 diffuse large b cell lymphoma at age 22. She first sought treatment at her local hospital, undergoing two cycles of treatment. When the treatment failed to eradicate her cancer, she came to City of Hope. Here, Wang underwent an autologous stem cell transplant and participate...
  • When Gilbert Fresquez, 72, lost an excessive amount of weight in late 2012, he didn’t think much of it. He assumed it was a side effect from a recent surgery to remove a carcinoid tumor in his small intestine. It wasn’t until a couple of years later during a routine doctor’s visit that the retired […]
  • Bladder cancer is a disease in which malignant (cancer) cells form in the tissues of the bladder. Among both men and women, the rates of new cancers have decreased in recent years. Death rates, meanwhile, have declined among women and have held stable among men. Specialists at City of Hope are internationally r...
  • The transplant patient had been hospitalized for a couple of months. A professional violinist, he hadn’t touched his instrument for too long, ever since chemotherapy had caused his skin to peel and his fingers to go numb; they were too sensitive even to touch the metal strings, much less make them sing. He had ...
  • Family members can find themselves wandering an unfamiliar wilderness of grief when cancer takes a loved one. City of Hope’s newly launched bereavement groups offer a safe place for them to explore and reconcile their feelings, and find their way back to their new normal lives. Through 12 weekly meetings, spous...