A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Aboody, Karen S., M.D. Bookmark and Share

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 

Aboody, Karen S., M.D.

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Lab Members

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • When Keith McKinny, 29, was first diagnosed with lymphoma and leukemia in 2010, the first person he thought of was former boyfriend Jason Mullins. The two hadn’t been in contact with each other for some time, but McKinny couldn’t think of anyone else with whom he wanted to be during that difficult period....
  • Yesenia Portillo’s search for a bone marrow donor started close to home. Her brother, sister and seven cousins all underwent testing, but none of them were a close enough match to donate the bone marrow stem cells she desperately needed for her transplant. Yesenia, now 16, had always been healthy and active. Bu...
  • Some of City of Hope’s most high-impact achievements have arisen from City of Hope’s globally recognized bone marrow transplant (BMT) program. The annual Karl G. Blume – Gerhard Schmidt Memorial Lecture in Transplantation Biology & Medicine — commemorating two of the most influential and revered...
  • Guido Marcucci, M.D., wants to put himself out of business. A respected clinician and esteemed basic and translational scientist, Marcucci joins City of Hope as co-director of the Gehr Family Center for Leukemia Research within the Hematologic Malignancies and Stem Cell Transplantation Institute. In this positi...
  • To say that myelofibrosis patients need more treatment options would be an understatement. The severely low platelet counts, known as thrombocytopenia, that are one of the hallmark symptoms of the disease can lead to chronic fatigue and weakness that not only damage quality of life but, ultimately, shorten life...
  • Patients with metastatic colorectal cancer often stop responding to the primary drugs used against the disease, leaving them with few options and little hope. Determined to increase those options, doctors and researchers at City of Hope are conducting two clinical trials that could lead to new treatments for pe...
  • Investigators working at City of Hope are making many significant inroads against many forms of cancer. To do that, they have to take a variety of approaches. Molecular oncology researchers focus on abnormal cancer-associated activity in a cell’s nucleus. One especially prominent factor in many breast and ovari...
  • In light of the new breast cancer screening guidelines, which call for women to have mammograms every other year from age 50 to 74, it’s more important than ever for women to understand their individual risk. On Monday, the U.S. Preventive Services Task force released new breast cancer screening guideline...
  • Cancer patients need, and deserve, more than medical care. They and their families need high-quality supportive care – that is, care that addresses their physical, emotional and spiritual well-being. Health care professionals increasingly understand this, but starting such programs from scratch isn’t easy...
  • Each year, City of Hope patients given another chance at life gather to pose for a picture like this one. Going on its 39th year, the celebration of patients free of blood cancers thanks to bone marrow or stem cell transplants has grown such that a photographer has to scale a cherry picker just to […]
  • Cancer patients who are participating in early-stage clinical trials need extra emotional and physical support due to their additional stress and often unique symptoms. Now an effort by researchers at City of Hope to create a model for such support has received a $6.8 million grant from the National Cancer Inst...
  • The need for improvements in treating malignant brain tumors has never been greater. Survival for many patients with these tumors are sometimes measured in just months. One reason that therapeutic options are limited is that traditional surgery is deemed too risky for many brain tumors, especially for those in ...
  • “Honestly, there’s nothing special about my story,” protested Daniel Samson, as he bounced Layla, his 3 1/2-year-old daughter, on his lap and put on a video for her to watch. “I just want to tell it for my own sake, and share it with other men who may be going through this chaos.” Samson spoke […]
  • As far back as he can remember, Jonathan Yamzon, M.D., wanted to be a doctor. “I knew it from the get-go,” he said, matter-of-factly. “I always envisioned it as the ideal; the supreme thing one could do with one’s life.” The youngest of six children, Yamzon was barely a toddler when his family moved to [&...
  • There’s never a “good” time for cancer to strike. With testicular cancer, the timing can seem particularly unfair. This disease targets young adults in the prime of life; otherwise healthy people unaccustomed to any serious illness, let alone cancer. And suddenly … “I can only imagine what they must...