A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Aboody, Karen S., M.D. Bookmark and Share

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 

Aboody, Karen S., M.D.

Laboratory of Karen S. Aboody, M.D.

Neural Stem Cell-Mediated Cancer Treatment

Overview: Neural stem cells (NSCs) have a natural ability to home to malignant tumors and invasive tumor cells, making them an ideal delivery vehicle for transporting therapeutic agents to tumor sites.  Dr. Aboody and colleagues at COH were the first in the world to move this therapeutic strategy from “bench to bedside” for brain tumor patients, demonstrating safety of their NSCs. 
 
My translational research laboratory focuses on neural stem cells (NSCs) and their therapeutic applications for primary and metastatic tumors. Our novel findings have demonstrated the inherent tumor-tropic property of NSCs, and their use as cellular delivery vehicles to effectively target and deliver therapeutic payloads to invasive tumor sites, including brain tumors and metastatic cancers. Their capacity for tracking infiltrating tumor cells and localizing to distant micro-tumor foci make NSCs a novel and attractive tumor selective delivery vehicle with tremendous clinical potential. In effect, the NSCs serve as a platform for tumor-localized therapy, which should also minimize toxicity to normal tissues. Our current research focuses on modifying human NSCs to deliver different therapeutic agents to tumor sites in animal models.
 
Clinical Trials: In 2013, we completed a first in-human FDA approved safety/feasibility NSC clinical trial at City of Hope in patients with recurrent high-grade gliomas (clinical PI: Dr. Jana Portnow, MD).  The NSCs delivered an enzyme (cytosine deaminase; CD) that converts an inactive prodrug (5-flurocytosine; 5-FC) to an active chemotherapeutic agent (5-Flurouracil; 5-FU).  The 5-FU produced by the NSCs diffuses into surrounding brain tumor tissue, selectively killing dividing tumor cells.  By producing the chemo drug only at the tumor sites, systemic side effects are minimized.  Results of this study demonstrated: 1) safety of administering therapeutic NSCs into the brain tumor resection cavity or biopsy site; 2) proof of concept for tumor-localized chemotherapy production – demonstrating that the CD-expressing NSCs were able to convert oral 5-FC to the active chemo drug 5-FU, locally in the brain; and 3) no significant immune response following one round of treatment.  A phase I dose escalation, multi-treatment round study is currently accruing patients at COH.
 
Active Research
1. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CD-NSCs + 5-FC → 5-FU
Funding: STOP Cancer, COH, The Rosalinde and Arthur Gilbert Foundation, The Ziman  Family  Foundation, NIH-NCI (Portnow, Aboody)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSCs are genetically modified to express cytosine deaminase (CD).  When the inactive prodrug 5-FC is administered, it crosses the BBB and gets converted to the active chemotherapeutic 5-FU by the CD expressing NSCs locally at the brain tumor sites.  In effect, allowing for tumor localized chemotherapy production, and reducing toxic side effects to normal tissues.
 

2. NSCs delivering a prodrug activating enzyme for tumor-localized chemotherapy production:   CE-NSCs + IRN → SN-38
Funding:  California Institute of Regenerative Medicine, NIH-U01, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Mary Kay Foundation (Berlin, Aboody)
 
NSC-mediated CE/Irinotecan (CPT-11) enzyme/prodrug therapy.  NSCs localize to metastatic tumor sites and express the CE enzyme. CE converts the intravenously administered CPT-11 (irinotecan) prodrug to the active chemotherapeutic drug SN-38.  SN-38 is highly toxic to the surrounding tumor cells
 
In 2010, we were granted an $18M CIRM Disease Team Award to move a 2nd generation enzyme/prodrug therapeutic toward clinical trials (Co-PIs:  Jana Portnow, MD and Larry Couture, PhD). Collaborators include the Synold lab for pharmacology, the Barish lab for 3D tumor reconstruction, the Forman lab (C Brown) for xenogen imaging and tumor modeling, and the Moats lab at Children’s Hospital Los Angeles for MRI imaging. We also work closely with the Center for Biomedicine & Genetics and the Office of IND Development and Regulatory Affairs. An IND has been submitted and we expect to initiate a phase I study for this NSC-mediated brain tumor therapy in 2015.  We are also funded $4.7M by an NIH-U01 (in collaboration with CHLA and St. Jude) to move this same product to clinical trial for pediatric patients with metastatic neuroblastoma by 2017.
 

3. NSCs delivering internalized gold nanoparticles for thermal ablative therapy
in collaboration with Jacob Berlin laboratory, COH
 
After loading NSCs with gold nanorods (NSC-AuNPs), they are administered (current preclinical investigations focusing on bladder and prostate cancer).  Following migration of NSCs to tumor  sites, localizing the gold particles, near infrared laser is applied, causing the gold nanoparticles to  vibrate and generate heat – ‘burning’ surrounding tumor tissue.
Funding:  COH, The Rosalinde and Arthur Gilbert Foundation, STOP Cancer, Alvarez Family  Charitable Foundation, Mary Kay Foundation (Berlin, Aboody), Ladies Auxiliary Veteran’s Grant (Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. NSCs delivering external nanoparticles for small molecule drug delivery
in collaboration with Jacob Berlin laboratory, COH
   
In collaboration with Dr. Berlin we are constructing NSC-NP hybrids, where the NPs are being  constructed to release drug after NSCs reach the tumor.  The NPs will be externally bound to the  NSCs.  Our initial preclinical studies are focused on peritoneal ovarian cancer metastases, for  potential translation tp patients with Stage III ovarian carcinoma.
Funding: COH, Anthony F. & Susan M. Markel Fund, NIH, The Rosalinde and Arthur Gilbert Foundation,  STOP Cancer, Alvarez Family Charitable Foundation. Ladies Auxillary Veteran’s Grant (R Mooney)
 
 
 
 
 
 
 
 
 
 
 
 
5. NSC Oncolytic Virotherapy
in collaboration with Maciej Lesniak laboratory, University of Chicago
Funding: NIH-U01 (PI, Lesniak)
 
We are further modifying our clinically relevant NSC line to produce conditionally replication competent oncolytic virus, CRAd-Survivan-pk7, for application to newly diagnosed glioma patients.
 

Translational Overview

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Additional research investigations early in the pipeline include:
 
  • NSCs as a platform for production of anti-HER2 Antibody for application to HER2 positive breast cancer brain metastases.
  • Identification of factors involved in NSC-tumor tropism.
  • Investigating efficiency of NSC-tumor tropism following various routes of administration (intracranial, intravenous, intraperitoneal, intranasal).
 

Lab Members

Karen S. Aboody, M.D. Lab Members

Aboody Lab 2015
 
Margarita Gutova, M.D.
Associate Research Professor

Rachael Mooney, Ph.D.
Post-doctoral CIRM Scholar
 
Marianne Metz
Staff Scientist, Lab Manager
 
Soraya Aramburo
Research Associate II, Small Animal Surgery Supervisor

Zhongqi Li, Ph.D.
Research Associate II

Revathiswari Tirughana-Samban, B.S.
Research Associate II
 
Diana Oganesyan
Research Technician
 
Ali-Asghar Zhumkhawala, MD
Urology Surgical Research Fellow
 
Monika Polewski,
City of Hope Graduate Student
 
Elena Chavez
CIRM Masters Intern, CSU Pomona
 
Ugochi Nwokafor
CIRM Masters Intern, CSU Channel Islands
 
Alberto Herrera
CIRM Intern, CSU Pomona
 
Elizabeth Ochoa
Senior Secretary, Dr. Aboody
 
Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

Beckman Research Institute of City of Hope is internationally  recognized for its innovative biomedical research.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.

Learn more about
City of Hope's institutional distinctions, breakthrough innovations and collaborations.
 
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 


NEWS & UPDATES
  • The outlook and length of survival has not changed much in the past 25 years for patients suffering from an aggressive form of pancreatic cancer known as pancreatic ductal adenocarcinoma (PDAC). These patients still have few options for therapy; currently available therapies are generally toxic and do not incre...
  • “With bladder cancer, the majority of patients that I see can be cured,” said urologist Kevin Chan, M.D., head of reconstructive urology at City of Hope. “The challenge is to get patients the same quality of life that they had before surgery.” To meet this challenge, Chan and the urologic team at City of Hope [...
  • Already pioneers in the use of immunotherapy, City of Hope researchers are now testing the bold approach to cancer treatment against one of medicine’s biggest challenges: brain cancer. This month, they will launch a clinical trial using patients’ own modified T cells to fight advanced brain tumors. One of but a...
  • Brain cancer may be one of the most-frightening diagnoses people can receive, striking at the very center of who we are as individuals. Further, it often develops over time, causing no symptoms until it’s already advanced. Listen to City of Hope Radio as Behnam Badie, M.D., director of the Brain Tumor Pro...
  • The whole is greater than the sum of its parts. It takes a village. No man is an island. Choose your aphorism: It’s a simple truth that collaboration usually is better than isolation. That’s especially true when you’re trying to introduce healthful habits and deliver health care to people at risk of disease and...
  • When Maryland Governor Larry Hogan announced earlier this week that he has the most common form of non-Hodgkin lymphoma, he was giving voice to the experience of more than 71,000 Americans each year. The announcement came with Hogan’s promise to stay in office while undergoing aggressive treatment for the...
  • The spine can be affected by many different kinds of tumors. Malignant, or cancerous, tumors can arise within the spine itself. Secondary spinal tumors, which are actually much more common, begin as cancers in another part of the body, such as the breast and prostate, and then spread, or metastasize, to the spi...
  • Although most cancer occurs in older adults, the bulk of cancer research doesn’t focus on this vulnerable and fast-growing population. City of Hope and its Cancer and Aging Research Team aim to change that, and they’re getting a significant boost from Professional Practice Leader Peggy Burhenn, R.N....
  • Liz Graef-Larcher’s first brain tumor was discovered by accident six years ago. The then-48-year-old with a long history of sinus problems and headaches had been sent for an MRI, and the scan found a lesion in her brain called a meningioma – a tumor that arises in the meninges, the layers of tissue that cover a...
  • The colon and rectum are parts of the body’s gastrointestinal system, also called the digestive tract. After food is digested in the stomach and nutrients are absorbed in the small intestine, the remaining material moves down into the lower large intestine (colon) where water and nutrients are absorbed. The low...
  • If there is one truism about hospital stays it is that patients want to get out. For many, however, the joy of being discharged is tempered by the unexpected challenges that recovery in a new setting may pose. Even with professional help, the quality of care and treatment that patients receive at City of Hope [...
  • Jana Portnow, M.D., associate director of the Brain Tumor Program at City of Hope, didn’t expect to specialize in treating brain tumors. But, early in her career, she undertook a year of research on pain management and palliative care and, in that program, got to know many patients with brain tumors. After that...
  • Ask any patient: Nurses are as pivotal in their care as doctors. They answer the call of a patient in the middle of the night, they hold the patient’s hand as he or she takes on yet another round of treatment and, in the best-case scenario, they wave goodbye as the patient leaves the hospital, […]
  • Many oncologists, not to mention their patients, might think that there’s no place for mathematical analysis in the treatment of cancer. They might think that all treatment decisions are based on unique factors affecting individual patients, with no connection to other patients and their treatment regimen...
  • Within three days in 2007, Stephanie Hosford, then 37, learned that she was pregnant with her long-awaited second child – and that she had triple-negative breast cancer. Soon afterward, Hosford discovered that she and her husband, Grant, had been approved to adopt a little girl from China.  After encountering m...