A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Analytical Pharmacology Bookmark and Share

Analytical Pharmacology Core Facility (APCF)

The Analytical Pharmacology Core facility (APCF) encourages and facilitates collaborative research between basic scientists and clinicians by providing a wide range of analytical services that benefit both groups. The APCF conducts pharmacokinetic and pharmacodynamic studies for both chemotherapy clinical trials and peer-reviewed preclinical studies.
 
The primary services of the APCF are:
 
  • Assay development and analysis (LS/MS/MS, GC/MS, HPLC, and AAS) of chemotherapeutic agents and related compounds.
  • Study design and expert analysis of pharmacokinetic, pharmacodynamic, and metabolic data.
 
The facility’s services are available to both City of Hope and external researchers.
 

Research reported in this publication included work performed in the Analytical Pharmacology Core supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
 

 

Services and Equipment

Services
Services currently offered by the Analytical Pharmacology Core facility:
  • Initial consultation on research projects
  • Study design and protocol review
  • Development, implementation, and validation of analytical methods.
  • Sample analysis (LC/MS/MS, GC/MS, HPLC, and AAS).
  • Pharmacokinetic programming and data analysis
  • Sample acquisition, tracking, and storage. Sample acquisition, storage analysis, including HPLC, LC/MS/MS and GC/MS, and microbiological assay methodologies
  • Participation in collaborative writing

Equipment
Analytical capabilities cover a wide range of available methods including:
  • LC/MC/MS (Waters Quattro Ultima and Quattro Premier XE
  • GC/MS (2 Shimadzu QP-5000's
  • HPLC with UV/Vis, fluorescence, and electrochemical detection (Shimadzu and Thermo Separations)
  • AAS with graphite furnace (PerkinElmer AAnalyst 300

HPLC capability includes four complete systems, which are integrated directly to dedicated computers running EZChrom software for automated post-run analysis. Three of the HPLC systems include automated injection systems for more convenient analysis of a large number of samples.

Instrument control and data acquisition for the Micromass mass detector and the associated Agilent HPLC are coordinated through a MassLynx-NT workstation running MassLynx and QuanLynx software. The GC/MS instrumentation is composed of a Shimadzu Model QP-5000 EI gas chromatograph/mass spectrometer, interfaced directly to a dedicated computer running CLASS-5000 software.

In addition to the chromatographic instrumentation, a Perkin Elmer AAnalyst 300 flameless atomic absorption spectrometer (AA) is available for the determination of metals and metal-containing compounds such as cisplatin and its analogs. Sample analysis by AA utilizes an automated injection system, with data acquisition and analysis using WinLab software on a dedicated computer.

 

Using the Facility

Scheduling Equipment
To access the Analytical Pharmacology Core facility, investigators should contact Timothy Synold to start the process.

Abstract for Grants

The APCF is located in the Shapiro Building and the analytical equipment is in room 1042. Freezers for sample storage are also located in the Beckman Center Freezer Farm, Room 1012. An additional HPLC with a diode array detector that is used part time for core service activities is located in room 1002 of the Fox North Research Building. HPLC capability includes four complete HPLC systems consisting of seven solvent delivery modules (4 Shimadzu LC-10A's, 2 Shimadzu LC-10AD's, 1 SpectraSystem P4000). HPLC detection capabilities cover a wide range of currently available methods, including UV/Vis (Shimadzu SPD-10AV), fluorescence (Shimadzu RF-10A), electrochemical (ESA models 5100A and 5200A), and photodiode array (SpectraSystem UV6000LP) detection systems. The Shimadzu HPLC systems are integrated directly into one of two dedicated PC's running Shimadzu EZChrom software for automated post-run analysis. Likewise, the SpectraSystem system is integrated to a dedicated PC running Chromquest (OEM version of EZChrom software). Three of the four HPLC systems include automated injection systems (2 Shimadzu SIL-10A's, 1 SpectraSystem AS3000) for more convenient analysis of a large number of samples. A Perkin Elmer AAnalyst 300 AA is available for the determination of metals and metal containing compounds, such as cisplatin and its analogs. Sample analysis by AA utilizes an automated injection system, with data acquisition and analysis using WinLab software on a dedicated PC. The GC/MS instrumentation is composed of a Shimadzu Model QP-5000 EI gas chromatograph/mass spectrometer, interfaced directly to a dedicated PC running CLASS-5000 software. A Micromass Quattro Ultima API Triple Stage Quadrupole Mass Spectrometer System (LC/MS/MS) provides exquisite selectivity and sensitivity for analytes in complex biological matrices. Instrument control and data acquisition for the Micromass mass detector and the associated Agilent HPLC are coordinated through a MassLynx-NT Workstation running MassLynx and QuanLynx software. As a result of high demand for LC/MS/.MS services, a second triple quadrupole tandem mass spectrometer (Waters Premier XE) was recently obtained to increase our capabilities. The front-end on the Premier XE is a Waters Agility Ultra-high Pressure Liquid Chromatograph (UPLC) that allows us to maximize sensitivity and minimize run-times, thereby increasing throughput. Like the Quattro Ultima, instrument control and data analysis on the Premier XE is performed with MassLynx and QuanLynx software. In addition, MetaboLynx software was purchased to aid in metabolite identification.

Pricing

Current pricing can be found on our iLab site. Please contact us for further questions.
 

Analytical Pharmacology Team

Contact Us

Edward Newman, Ph.D.
Co-director
626-256-HOPE (4673)
enewman@coh.org
 
Timothy W. Synold, Pharm.D.
Co-director
626-256-HOPE (4673)
tsynold@coh.org
 
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000
 
Shapiro Building
Room 1042
Phone: 626-256-HOPE (4673), ext. 62110
Fax: 626-301-8898
 

Analytical Pharmacology

Analytical Pharmacology Core Facility (APCF)

The Analytical Pharmacology Core facility (APCF) encourages and facilitates collaborative research between basic scientists and clinicians by providing a wide range of analytical services that benefit both groups. The APCF conducts pharmacokinetic and pharmacodynamic studies for both chemotherapy clinical trials and peer-reviewed preclinical studies.
 
The primary services of the APCF are:
 
  • Assay development and analysis (LS/MS/MS, GC/MS, HPLC, and AAS) of chemotherapeutic agents and related compounds.
  • Study design and expert analysis of pharmacokinetic, pharmacodynamic, and metabolic data.
 
The facility’s services are available to both City of Hope and external researchers.
 

Research reported in this publication included work performed in the Analytical Pharmacology Core supported by the National Cancer Institute of the National Institutes of Health under award number P30CA33572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
 

 

Services and Equipment

Services and Equipment

Services
Services currently offered by the Analytical Pharmacology Core facility:
  • Initial consultation on research projects
  • Study design and protocol review
  • Development, implementation, and validation of analytical methods.
  • Sample analysis (LC/MS/MS, GC/MS, HPLC, and AAS).
  • Pharmacokinetic programming and data analysis
  • Sample acquisition, tracking, and storage. Sample acquisition, storage analysis, including HPLC, LC/MS/MS and GC/MS, and microbiological assay methodologies
  • Participation in collaborative writing

Equipment
Analytical capabilities cover a wide range of available methods including:
  • LC/MC/MS (Waters Quattro Ultima and Quattro Premier XE
  • GC/MS (2 Shimadzu QP-5000's
  • HPLC with UV/Vis, fluorescence, and electrochemical detection (Shimadzu and Thermo Separations)
  • AAS with graphite furnace (PerkinElmer AAnalyst 300

HPLC capability includes four complete systems, which are integrated directly to dedicated computers running EZChrom software for automated post-run analysis. Three of the HPLC systems include automated injection systems for more convenient analysis of a large number of samples.

Instrument control and data acquisition for the Micromass mass detector and the associated Agilent HPLC are coordinated through a MassLynx-NT workstation running MassLynx and QuanLynx software. The GC/MS instrumentation is composed of a Shimadzu Model QP-5000 EI gas chromatograph/mass spectrometer, interfaced directly to a dedicated computer running CLASS-5000 software.

In addition to the chromatographic instrumentation, a Perkin Elmer AAnalyst 300 flameless atomic absorption spectrometer (AA) is available for the determination of metals and metal-containing compounds such as cisplatin and its analogs. Sample analysis by AA utilizes an automated injection system, with data acquisition and analysis using WinLab software on a dedicated computer.

 

Using the Facility

Using the Facility

Scheduling Equipment
To access the Analytical Pharmacology Core facility, investigators should contact Timothy Synold to start the process.

Abstract for Grants

Abstract for Grants

The APCF is located in the Shapiro Building and the analytical equipment is in room 1042. Freezers for sample storage are also located in the Beckman Center Freezer Farm, Room 1012. An additional HPLC with a diode array detector that is used part time for core service activities is located in room 1002 of the Fox North Research Building. HPLC capability includes four complete HPLC systems consisting of seven solvent delivery modules (4 Shimadzu LC-10A's, 2 Shimadzu LC-10AD's, 1 SpectraSystem P4000). HPLC detection capabilities cover a wide range of currently available methods, including UV/Vis (Shimadzu SPD-10AV), fluorescence (Shimadzu RF-10A), electrochemical (ESA models 5100A and 5200A), and photodiode array (SpectraSystem UV6000LP) detection systems. The Shimadzu HPLC systems are integrated directly into one of two dedicated PC's running Shimadzu EZChrom software for automated post-run analysis. Likewise, the SpectraSystem system is integrated to a dedicated PC running Chromquest (OEM version of EZChrom software). Three of the four HPLC systems include automated injection systems (2 Shimadzu SIL-10A's, 1 SpectraSystem AS3000) for more convenient analysis of a large number of samples. A Perkin Elmer AAnalyst 300 AA is available for the determination of metals and metal containing compounds, such as cisplatin and its analogs. Sample analysis by AA utilizes an automated injection system, with data acquisition and analysis using WinLab software on a dedicated PC. The GC/MS instrumentation is composed of a Shimadzu Model QP-5000 EI gas chromatograph/mass spectrometer, interfaced directly to a dedicated PC running CLASS-5000 software. A Micromass Quattro Ultima API Triple Stage Quadrupole Mass Spectrometer System (LC/MS/MS) provides exquisite selectivity and sensitivity for analytes in complex biological matrices. Instrument control and data acquisition for the Micromass mass detector and the associated Agilent HPLC are coordinated through a MassLynx-NT Workstation running MassLynx and QuanLynx software. As a result of high demand for LC/MS/.MS services, a second triple quadrupole tandem mass spectrometer (Waters Premier XE) was recently obtained to increase our capabilities. The front-end on the Premier XE is a Waters Agility Ultra-high Pressure Liquid Chromatograph (UPLC) that allows us to maximize sensitivity and minimize run-times, thereby increasing throughput. Like the Quattro Ultima, instrument control and data analysis on the Premier XE is performed with MassLynx and QuanLynx software. In addition, MetaboLynx software was purchased to aid in metabolite identification.

Pricing

Pricing

Current pricing can be found on our iLab site. Please contact us for further questions.
 

Analytical Pharmacology Team

Analytical Pharmacology Team

Contact Us

Contact Us

Edward Newman, Ph.D.
Co-director
626-256-HOPE (4673)
enewman@coh.org
 
Timothy W. Synold, Pharm.D.
Co-director
626-256-HOPE (4673)
tsynold@coh.org
 
City of Hope and Beckman Research Institute
1500 East Duarte Road
Duarte, CA  91010-3000
 
Shapiro Building
Room 1042
Phone: 626-256-HOPE (4673), ext. 62110
Fax: 626-301-8898
 
Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Recognized nationwide for its innovative biomedical research, City of Hope's Beckman Research Institute is home to some of the most tenacious and creative minds in science.
City of Hope is one of only 41 Comprehensive Cancer Centers in the country, the highest designation awarded by the National Cancer Institute to institutions that lead the way in cancer research, treatment, prevention and professional education.
Learn more about City of Hope's institutional distinctions, breakthrough innovations and collaborations.
Support Our Research
By giving to City of Hope, you support breakthrough discoveries in laboratory research that translate into lifesaving treatments for patients with cancer and other serious diseases.
 
 
 
 
Media Inquiries/Social Media
 
CONNECT WITH US
Facebook  Twitter  YouTube  Blog
 


NEWS & UPDATES
  • White button mushrooms seem fairly innocuous as fungi go. Unlike portabellas, they don’t center stage at the dinner table, and unlike truffles, they’re not the subject of gourmand fervor. But appearances can be deceiving when it comes to these mild-mannered Clark Kents of the food world. In a study ...
  • Doctors often recommend preventive screenings for several cancers, based on hereditary or genetic factors, but brain tumors aren’t one of them. Primary brain tumors, which originate in the brain rather than spreading from another location, seem to develop at random, and doctors have little insight into wh...
  • Stopping cancer starts with research. To that end, STOP CANCER has awarded $525,000 in grants to City of Hope for 2015, supporting innovative research projects and recognizing the institution’s leadership in advancing cancer treatment and prevention. Founded in 1988, STOP CANCER underwrites the work of le...
  • Cancer may not be the disease many people think it is. Normally, cancer is considered to be a disease in which cells multiply at an extremely high, and unusual, rate – increasing the likelihood of genetic mutations. But increasingly, leading researchers at City of Hope and elsewhere are contending that cancer i...
  • “Of all forms of inequality, injustice in the health care system is the most shocking and inhumane.” By the time the Rev. Martin Luther King Jr. spoke those words in Chicago in 1966, the Civil Rights Act had been passed, the Voting Rights Act was the law of the land and the March on Washington was […]
  • Eight years ago, Matthew Loscalzo surprised himself by accepting the offer to become City of Hope’s administrative director of the Sheri & Les Biller Patient and Family Resource Center and executive director of the Department of Supportive Care Medicine. At the time, he was administrative director of the Sc...
  • The mental fog that patients can experience after undergoing chemotherapy treatment for cancer has a name: “chemo brain.” “Many patients report hearing or reading about chemotherapy-related cognitive deficits, but few are actually prepared to deal with these changes,” said Celina Lemon, M.A., an occupational th...
  • Cancer treatments have improved over the years, but one potential source of treatments and cures remains largely untapped: nature. Blueberries, cinnamon, xinfeng, grape seed (and skin) extract, mushrooms, barberry and pomegranates all contain compounds with the potential to treat or prevent cancer. Scientists a...
  • In the U.S., there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate and lung, according to the American Cancer Society. Each year, 5 million people are treated for skin cancer. Here, Hans Schoellhammer, M.D., assistant clinical professor at City of Hope | Ant...
  • As public health experts know, health improvement starts in the community. Now, City of Hope  has been recognized for its efforts to improve the lives of residents of its own community. The institution will receive funding from the Institute for Healthcare Improvement  to support promising community-based work ...
  • For almost four decades, blood cancer survivors who received bone marrow, or stem cell, transplants have returned to City of Hope to celebrate life, second chances and science. The first reunion, in 1976, was a small affair: spaghetti for a single patient, his brother who served as his donor and those who took ...
  • Chemotherapy is an often-essential component of cancer treatment, attacking cells that divide quickly and helping stop cancer’s advance. But the very characteristics that make chemotherapy effective against cancer also can make it toxic to healthy cells, leading to side effects such as hair loss, nausea, ...
  • When you want to understand how to enhance the patient experience, go straight to the source: The patients. Patients and their families offer unique perspectives on care and services and can provide valuable insights about what is working well and what is not. That’s why City of Hope turns to them for advice. S...
  • Take it from City of Hope researchers: Medical science isn’t just for scientists, but something the whole family can enjoy. From 1 to 4 p.m. on Saturday, May 16, the institution will offer a variety of educational and fun-filled science and healthy living activities at its second Community Science Festiva...
  • Attention, parents! Only a few serious sunburns can increase a child’s ultimate risk of skin cancer. Further, some studies suggest that ultraviolet (UV) exposure before the age of 10 is the most important factor for melanoma risk. Here skin cancer expert Jae Jung, M.D., Ph.D., assistant professor in the D...