A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Cancer Biology Bookmark and Share

Cancer Biology

City of Hope's Department of Cancer Biology offers a multidisciplinary research and training environment in a number of scientific areas, including:
 
  • Biomedical Informatics
  • Cancer Metabolism
  • Cancer Prevention and Diagnosis
  • Developmental Biology
  • Drug Resistance
  • Epigenetics
  • Hormonal Carcinogenesis
  • Genetics
  • Genomics
  • Tumor Biology
 
The department focuses on understanding the basic mechanisms of genetics, gene expression and function, signaling pathways, mutagenesis, DNA repair and epigenetics as they relate to the development and progression of cancer. Researchers within the department collaborate with clinical and basic research programs within City of Hope and with other research centers nationally and internationally. The research team explores mechanisms of cancer development (known as carcinogenesis) and aim to develop powerful approaches to cancer prevention and to improve diagnostic tools for detecting cancer early, when it is most treatable.

Laboratory Research

Shiuan Chen, Ph.D. - Chair & Professor - Hormones and Cancer: Chemoprevention
Dr. Chen has studied the role of aromatase in breast cancer development for more than 20 years. Currently Dr. Chen's research explores the mechanisms of endocrine resistance in breast cancer cells and seeks to understand the structure-function relationship of the aromatase protein in order to develop chemoprevention strategies using phytochemicals with anti-aromatase activity. His laboratory also investigates the impact of environmental chemicals on human health by modulating aromatase activity and expression.
 
Susan Kane, Ph.D. - Associate Chair & Professor - Drug Resistance
Dr. Kane's lab studies the molecular and cellular mechanisms of drug resistance to learn more about the mechanism of action of anticancer drugs, why treatments fail and which patients will best respond to specific therapies.
 
WenYong Chen, Ph.D. – Associate Professor - Epigenetics, Cancer and Aging
Dr. Chen's lab deciphers roles and functions of epigenetic regulators and determines their differential contribution to cancer and longevity, and through which, to develop approaches to improve cancer treatment, reduce cancer risk and promote healthy aging.
 
Gerald Holmquist, Ph.D. – Professor Emeritus
 
Mei Kong, Ph.D. – Assistant Professor - Signal Transduction and Cancer Metabolism
Dr. Kong's research lab aims to delineate the strategies used by tumor cells to survive periods of metabolic stress and then to develop novel therapies targeting nutrient sensing pathways of neoplastic cells. Currently their research focuses on protein phosphatase 2A (PP2A) complexes in regulation of cancer cell survival upon nutrients deprivation.
 
Timothy O'Connor, Ph.D. – Professor - DNA repair, mutagenesis and cancer
Dr. O'Connor's lab is interested in DNA repair mechanisms, the biological consequences of repair failure, exploiting DNA repair mechanisms for therapeutic benefit and how DNA repair mechanisms can be used to control the epigenome of cells.
 
Gerd Pfeifer, Ph.D. – Lester M. and Irene C. Finkelstein Endowed Chair in Biology & Professor - Epigenetics and Genetics of Cancer
Dr. Pfeifer's laboratory studies biological mechanisms involved in human cancer. Our goal is to determine the molecular mechanisms that are involved in formation of genetic changes (gene mutations) and epigenetic changes (DNA methylation and histone modifications) in the human genome.
 
Arthur Riggs, Ph.D. – Adjunct Professor (Chairperson-Diabetes and Director Emeritus, BRI) - DNA Methylation and Mammalian Gene Regulation
Dr. Riggs' lab research is broad-based and encompasses chromatin structure-function and gene regulation. Current studies include epigenetic changes in early mouse development, including demethylation mechanisms.
 
Dustin Schones, Ph.D. – Assistant Professor - Epigenomics of development and disease
Dr. Schones lab is interested in the role of chromatin in gene regulation, how other regulatory elements interact with chromatin and how disruptions in these systems lead to diseases like cancer and diabetes. The lab is furthermore interested in the application of genomics to personalized medicine.
 
Judith Singer-Sam, Ph.D. – Professor Emeritus –Epigenetics and Developmental Biology
Monoallelic expression is a characteristic of genes that are implicated in certain inherited disorders of the CNS as well as some cancers. Using clonal CNS-derived neural stem cells as a model system, Dr. Sam's group is studying possible mechanisms for such expression.
 
S. Emily Wang, Ph.D. – Associate Professor - Growth Factors and Cancer
Dr. Wang's group focuses on the role of signaling by growth factor receptors and oncogenes in cancer progression as well as the development of molecular therapeutics based on mechanistic study.
 

Cancer Biology Faculty

Cancer Biology

Cancer Biology

City of Hope's Department of Cancer Biology offers a multidisciplinary research and training environment in a number of scientific areas, including:
 
  • Biomedical Informatics
  • Cancer Metabolism
  • Cancer Prevention and Diagnosis
  • Developmental Biology
  • Drug Resistance
  • Epigenetics
  • Hormonal Carcinogenesis
  • Genetics
  • Genomics
  • Tumor Biology
 
The department focuses on understanding the basic mechanisms of genetics, gene expression and function, signaling pathways, mutagenesis, DNA repair and epigenetics as they relate to the development and progression of cancer. Researchers within the department collaborate with clinical and basic research programs within City of Hope and with other research centers nationally and internationally. The research team explores mechanisms of cancer development (known as carcinogenesis) and aim to develop powerful approaches to cancer prevention and to improve diagnostic tools for detecting cancer early, when it is most treatable.

Laboratory Research

Shiuan Chen, Ph.D. - Chair & Professor - Hormones and Cancer: Chemoprevention
Dr. Chen has studied the role of aromatase in breast cancer development for more than 20 years. Currently Dr. Chen's research explores the mechanisms of endocrine resistance in breast cancer cells and seeks to understand the structure-function relationship of the aromatase protein in order to develop chemoprevention strategies using phytochemicals with anti-aromatase activity. His laboratory also investigates the impact of environmental chemicals on human health by modulating aromatase activity and expression.
 
Susan Kane, Ph.D. - Associate Chair & Professor - Drug Resistance
Dr. Kane's lab studies the molecular and cellular mechanisms of drug resistance to learn more about the mechanism of action of anticancer drugs, why treatments fail and which patients will best respond to specific therapies.
 
WenYong Chen, Ph.D. – Associate Professor - Epigenetics, Cancer and Aging
Dr. Chen's lab deciphers roles and functions of epigenetic regulators and determines their differential contribution to cancer and longevity, and through which, to develop approaches to improve cancer treatment, reduce cancer risk and promote healthy aging.
 
Gerald Holmquist, Ph.D. – Professor Emeritus
 
Mei Kong, Ph.D. – Assistant Professor - Signal Transduction and Cancer Metabolism
Dr. Kong's research lab aims to delineate the strategies used by tumor cells to survive periods of metabolic stress and then to develop novel therapies targeting nutrient sensing pathways of neoplastic cells. Currently their research focuses on protein phosphatase 2A (PP2A) complexes in regulation of cancer cell survival upon nutrients deprivation.
 
Timothy O'Connor, Ph.D. – Professor - DNA repair, mutagenesis and cancer
Dr. O'Connor's lab is interested in DNA repair mechanisms, the biological consequences of repair failure, exploiting DNA repair mechanisms for therapeutic benefit and how DNA repair mechanisms can be used to control the epigenome of cells.
 
Gerd Pfeifer, Ph.D. – Lester M. and Irene C. Finkelstein Endowed Chair in Biology & Professor - Epigenetics and Genetics of Cancer
Dr. Pfeifer's laboratory studies biological mechanisms involved in human cancer. Our goal is to determine the molecular mechanisms that are involved in formation of genetic changes (gene mutations) and epigenetic changes (DNA methylation and histone modifications) in the human genome.
 
Arthur Riggs, Ph.D. – Adjunct Professor (Chairperson-Diabetes and Director Emeritus, BRI) - DNA Methylation and Mammalian Gene Regulation
Dr. Riggs' lab research is broad-based and encompasses chromatin structure-function and gene regulation. Current studies include epigenetic changes in early mouse development, including demethylation mechanisms.
 
Dustin Schones, Ph.D. – Assistant Professor - Epigenomics of development and disease
Dr. Schones lab is interested in the role of chromatin in gene regulation, how other regulatory elements interact with chromatin and how disruptions in these systems lead to diseases like cancer and diabetes. The lab is furthermore interested in the application of genomics to personalized medicine.
 
Judith Singer-Sam, Ph.D. – Professor Emeritus –Epigenetics and Developmental Biology
Monoallelic expression is a characteristic of genes that are implicated in certain inherited disorders of the CNS as well as some cancers. Using clonal CNS-derived neural stem cells as a model system, Dr. Sam's group is studying possible mechanisms for such expression.
 
S. Emily Wang, Ph.D. – Associate Professor - Growth Factors and Cancer
Dr. Wang's group focuses on the role of signaling by growth factor receptors and oncogenes in cancer progression as well as the development of molecular therapeutics based on mechanistic study.
 

Cancer Biology Faculty

Cancer Biology Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 


NEWS & UPDATES
  • The body’s immune system is usually adept at attacking outside invaders such as bacteria and viruses. But because cancer originates from the body’s own cells, the immune system can fail to see it as foreign. As a result, the body’s most powerful ally can remain largely idle against cancer as the disease progres...
  • On Jan. 1, 2015, five City of Hope patients who have journeyed through cancer will welcome the new year with their loved ones atop City of Hope’s Tournament of Roses Parade float. The theme of the float is “Made Possible by HOPE.” The theme of the parade is “Inspiring Stories.” Her...
  • Are you thinking about switching from traditional cigarettes to e-cigarettes for the Great American Smokeout? Are you thinking that might be a better option than the traditional quit-smoking route? Think again. For lung expert Brian Tiep, M.D., the dislike and distrust he feels for e-cigs comes down to this: Th...
  • Hematologist Robert Chen, M.D., is boosting scientific discovery at City of Hope and, by extension, across the nation. Just ask the National Cancer Institute. The institution recently awarded Chen the much-sought-after Clinical Investigator Team Leadership Award for boosting scientific discovery at City of Hope...
  • Great strides have been made in treating cancer – including lung cancer – but by the time people show symptoms of the disease, the cancer has usually advanced. That’s because, at early stages, lung cancer has no symptoms. Only recently has lung cancer screening become an option. (Read more about the risks...
  • Identifying cures for currently incurable diseases and providing patients with safe, fast and potentially lifesaving treatments is the focus of City of Hope’s new Alpha Clinic for Cell Therapy and Innovation (ACT-I). The clinic is funded by an $8 million, five-year grant from the California Institute for Regene...
  • Cancer is a couple’s disease. It affects not just the person diagnosed, but his or her partner as well. It also affects the ability of both people to communicate effectively. The Couples Coping with Cancer Together program at City of Hope teaches couples how to communicate and solve problems as a unit. He...
  • Chemotherapy drugs work by either killing cancer cells or by stopping them from multiplying, that is, dividing. Some of the more powerful drugs used to treat cancer do their job by interfering with the cancer cells’ DNA and RNA growth, preventing them from copying themselves and dividing. Such drugs, however, l...
  • During October, everything seems to turn pink – clothing, the NFL logo, tape dispensers, boxing gloves, blenders, soup cans, you name it – in order to raise awareness for what many believe is the most dangerous cancer that affects women: breast cancer. But, in addition to thinking pink, women should...
  • In February 2003, when she was only 16 months old, Maya Gallardo was diagnosed with acute myelogenous leukemia (AML) and, to make matters much worse, pneumonia. The pneumonia complicated what was already destined to be grueling treatment regimen. To assess the extent of her illness, Maya had to endure a spinal ...
  • Former smokers age 55 to 74 who rely on Medicare for health care services have just received a long-hoped-for announcement. Under a proposed decision from the Centers for Medicare and Medicaid Services, they’ll now have access to lung cancer screening with a low-dose CT scan. The proposed decision, announ...
  • City of Hope has a longstanding commitment to combating diabetes, a leading national and global health threat. Already, it’s scored some successes, from research that led to the development of synthetic human insulin – still used by millions of patients – to potentially lifesaving islet cell transplants. Diabet...
  • Dee Hunt never smoked. Neither did her five sisters and brothers. They didn’t have exposure to radon or asbestos, either. That didn’t prevent every one of them from being diagnosed with lung cancer. Their parents were smokers, but they’d all left home more than 30 years before any of them were diagn...
  • They may not talk about it, but women with cancers in the pelvic region, such as cervical cancer, bladder cancer and uterine cancer, often have problems controlling their urine, bowel or flatus. Although they may feel isolated, they’re far from alone. Many other women have such problems, too. In fact, nea...
  • Cancer that spreads to the liver poses a significant threat to patients, and a great challenge to surgeons. The organ’s anatomical complexity and its maze of blood vessels make removal of tumors difficult, even for specialized liver cancer surgeons. Following chemotherapy, the livers of cancer patients are not ...