A National Cancer Institute-designated Comprehensive Cancer Center

Make an appointment: 800-826-HOPE
Molecular and Cellular Biology Bookmark and Share

Molecular and Cellular Biology

City of Hope’s Department of Molecular and Cellular Biology, originally Molecular Genetics, was formed in 1982 under the direction of Keiichi Itakura, Ph.D., professor of molecular biology. Research interests in the department include an array of biological systems and problems, but the unifying theme is mechanisms regulating expression of genetic information at both the transcriptional level (where DNA directs the synthesis of RNA) and the post-transcriptional level (meaning how genes control protein synthesis from newly-transcribed RNAs).

The department includes eight independent laboratories, as well as the Electron Microscopy and Atomic Force Microscopy Core Facility, overseen by Marcia Miller, Ph.D. and Zhuo Li, Ph.D.

Investigators within the department actively collaborate with investigators in the medical center, making important contributions to clinical investigations at City of Hope. The faculty also collaborates with the wider academic and scientific community. Faculty members have served numerous leadership roles, including with the National Institutes of Health, American Cancer Society and the Army Breast Cancer Research Program.

Department faculty members also teach and mentor graduate students in City of Hope’sIrell & Manella Graduate School of Biological Sciences. The department offers students the opportunity to carry out research in genetics, developmental biology, molecular genetics, molecular biochemistry, cell biology, molecular virology, and molecular and cellular immunology.
 
Laboratory Research

John J. Rossi, Ph.D. - siRNA, ribozymes, aptamers and genetic therapies
The focus of this laboratory is the biology and therapeutic application of small RNAs, with particular emphasis on small interfering RNAs (siRNAs) and ribozymes as therapeutic agents for the treatment of HIV infection.

Adam Bailis, Ph.D. – Genetics and molecular biology
This laboratory uses genetic and molecular biological approaches to study how DNA replication and repair are coordinated in the maintenance of genome stability.

Mark Boldin, M.D., Ph.D. – Noncoding RNA control of mammalian hematopoiesis, immunity and cancer
Research in this lab is focused on the biology of noncoding RNA and the understanding of its role in the regulation of inflammation and cancer using molecular, biological and genetic approaches.
 
John Burnett, Ph.D. - Gene therapy and genome engineering
With a focus on gene and RNA-based therapies and targeted genome editing, this laboratory develops advanced therapeutics for cancer, genetic diseases, and infectious diseases, including HIV/AIDS.

Keiichi Itakura, Ph.D. – Molecular biology
The laboratory of Keiichi Itakura, Ph.D.,studies the role of ARID transcription factors in the development and maturation of adipocytes and carcinogenesis. They also study molecular events in energy balance, as well as the functions of homeobox genes in prostate cancer.

Ren-Jang Lin, Ph.D. – RNA processing and regulatory RNA
The research objectives of this laboratory are two-fold, both centered on RNA: to decipher the molecular mechanism of RNA processing, and to reveal novel roles of RNA in regulating gene expression, with emphasis on aberrant cellular factors linked to human diseases.

Linda Malkas, Ph.D. – DNA replication/repair and human disease
The laboratory focuses on understanding the mechanisms mediating human cell DNA replication and repair and applying these discoveries to the development for new biomarkers and molecular targets for cancer.

Marcia Miller, Ph.D. – Molecular immunogenetics
This lab uses the chicken as their experimental model to study how genetic polymorphism influences the incidence of infection and cancer.

Department of Molecular and Cellular Biology Research Highlights

Genome Editing
Targeted genome engineering technologies have emerged as a genetic tool for biological research and as a new class of therapies in biomedicine.  Using the RNA-guided CRISPR/Cas9 system, zinc-finger nucleases (ZFNs), or TAL effector nucleases (TALENs), several labs are using genome engineering to study the functions of protein-coding and noncoding genes and to develop novel therapeutics for genetic and acquired diseases.
 
Yeast genetics; post-transcriptional processing
The department maintains extensive expertise in yeast genetics and molecular biology. Studies focus on mechanisms involved in homologous recombination and post-transcriptional processing of premessenger RNAs. Research also includes the development and applications of RNA aptamers regulating diverse processes ranging from pre-mRNA splicing to receptor-mediated delivery of small interfering RNAs (siRNAs) to treat cancer and viral infections.

Epigenetics
Defining the epigenetic mechanisms regulating gene expression is vital to understanding both normal development and carcinogenesis. Investigative efforts include determining mechanisms of genetic imprinting and the role of small RNAs in heterochromatin formation. Research on the function of small RNAs is an important program in the department. There is also strong emphasis on how microRNA functions as a post-transcriptional regulator of gene expression. Several laboratories are exploring therapeutic applications of RNA interference.

DNA replication/repair and human disease
Organisms need to safeguard genetic information to prevent the damaging effects of aging and disease. This is accomplished by accurate replication of DNA and by repair of any damage incurred as a result of endogenous or exogenous factors. New exciting details about DNA replication and repair are being discovered. These processes are proving to be highly interconnected, and could lead to treatments for various diseases and age-related disorders.

Biochemistry of DNA damage and repair
Understanding how DNA is damaged, both by mutagens and by treatments such as chemotherapy and radiotherapy, and the mechanisms governing DNA repair or the failure thereof, are essential to progress in developing better prevention and treatment strategies for a variety of cancers.

ARID transcription factors
This class of DNA-binding proteins plays multiple roles in the normal development of a variety of tissues, most prominently fat, bone and muscle. Recent discoveries suggest that these factors help to create activating "bookmarks" in genes that are crucial for establishing and maintaining the identities of these tissues. Therefore, the study of ARID transcription factors may lead to a greater understanding of medical problems ranging from obesity and diabetes to muscular injury, skeletal defects, and cancer.

Genetic influences in responses to cancer and infection
One project focuses on genetic influences in the incidence of Marek’s T-cell lymphoma.  Another is centered on chicken MR1 polymorphism and microbiota that may caused disease in humans.

Non-coding RNA control of mammalian hematopoiesis, immunity and cancer
Understanding the molecular mechanisms that govern immune cell development and function is key for the advance of novel therapeutic approaches to treat autoimmunity and cancer. Noncoding RNAs, in particular microRNAs, play a critical role in shaping the mammalian immune response and hematopoiesis, and are the focus of our research interest.

Molecular and Cellular Biology Faculty

Molecular and Cellular Biology

Molecular and Cellular Biology

City of Hope’s Department of Molecular and Cellular Biology, originally Molecular Genetics, was formed in 1982 under the direction of Keiichi Itakura, Ph.D., professor of molecular biology. Research interests in the department include an array of biological systems and problems, but the unifying theme is mechanisms regulating expression of genetic information at both the transcriptional level (where DNA directs the synthesis of RNA) and the post-transcriptional level (meaning how genes control protein synthesis from newly-transcribed RNAs).

The department includes eight independent laboratories, as well as the Electron Microscopy and Atomic Force Microscopy Core Facility, overseen by Marcia Miller, Ph.D. and Zhuo Li, Ph.D.

Investigators within the department actively collaborate with investigators in the medical center, making important contributions to clinical investigations at City of Hope. The faculty also collaborates with the wider academic and scientific community. Faculty members have served numerous leadership roles, including with the National Institutes of Health, American Cancer Society and the Army Breast Cancer Research Program.

Department faculty members also teach and mentor graduate students in City of Hope’sIrell & Manella Graduate School of Biological Sciences. The department offers students the opportunity to carry out research in genetics, developmental biology, molecular genetics, molecular biochemistry, cell biology, molecular virology, and molecular and cellular immunology.
 
Laboratory Research

John J. Rossi, Ph.D. - siRNA, ribozymes, aptamers and genetic therapies
The focus of this laboratory is the biology and therapeutic application of small RNAs, with particular emphasis on small interfering RNAs (siRNAs) and ribozymes as therapeutic agents for the treatment of HIV infection.

Adam Bailis, Ph.D. – Genetics and molecular biology
This laboratory uses genetic and molecular biological approaches to study how DNA replication and repair are coordinated in the maintenance of genome stability.

Mark Boldin, M.D., Ph.D. – Noncoding RNA control of mammalian hematopoiesis, immunity and cancer
Research in this lab is focused on the biology of noncoding RNA and the understanding of its role in the regulation of inflammation and cancer using molecular, biological and genetic approaches.
 
John Burnett, Ph.D. - Gene therapy and genome engineering
With a focus on gene and RNA-based therapies and targeted genome editing, this laboratory develops advanced therapeutics for cancer, genetic diseases, and infectious diseases, including HIV/AIDS.

Keiichi Itakura, Ph.D. – Molecular biology
The laboratory of Keiichi Itakura, Ph.D.,studies the role of ARID transcription factors in the development and maturation of adipocytes and carcinogenesis. They also study molecular events in energy balance, as well as the functions of homeobox genes in prostate cancer.

Ren-Jang Lin, Ph.D. – RNA processing and regulatory RNA
The research objectives of this laboratory are two-fold, both centered on RNA: to decipher the molecular mechanism of RNA processing, and to reveal novel roles of RNA in regulating gene expression, with emphasis on aberrant cellular factors linked to human diseases.

Linda Malkas, Ph.D. – DNA replication/repair and human disease
The laboratory focuses on understanding the mechanisms mediating human cell DNA replication and repair and applying these discoveries to the development for new biomarkers and molecular targets for cancer.

Marcia Miller, Ph.D. – Molecular immunogenetics
This lab uses the chicken as their experimental model to study how genetic polymorphism influences the incidence of infection and cancer.

Research Highlights

Department of Molecular and Cellular Biology Research Highlights

Genome Editing
Targeted genome engineering technologies have emerged as a genetic tool for biological research and as a new class of therapies in biomedicine.  Using the RNA-guided CRISPR/Cas9 system, zinc-finger nucleases (ZFNs), or TAL effector nucleases (TALENs), several labs are using genome engineering to study the functions of protein-coding and noncoding genes and to develop novel therapeutics for genetic and acquired diseases.
 
Yeast genetics; post-transcriptional processing
The department maintains extensive expertise in yeast genetics and molecular biology. Studies focus on mechanisms involved in homologous recombination and post-transcriptional processing of premessenger RNAs. Research also includes the development and applications of RNA aptamers regulating diverse processes ranging from pre-mRNA splicing to receptor-mediated delivery of small interfering RNAs (siRNAs) to treat cancer and viral infections.

Epigenetics
Defining the epigenetic mechanisms regulating gene expression is vital to understanding both normal development and carcinogenesis. Investigative efforts include determining mechanisms of genetic imprinting and the role of small RNAs in heterochromatin formation. Research on the function of small RNAs is an important program in the department. There is also strong emphasis on how microRNA functions as a post-transcriptional regulator of gene expression. Several laboratories are exploring therapeutic applications of RNA interference.

DNA replication/repair and human disease
Organisms need to safeguard genetic information to prevent the damaging effects of aging and disease. This is accomplished by accurate replication of DNA and by repair of any damage incurred as a result of endogenous or exogenous factors. New exciting details about DNA replication and repair are being discovered. These processes are proving to be highly interconnected, and could lead to treatments for various diseases and age-related disorders.

Biochemistry of DNA damage and repair
Understanding how DNA is damaged, both by mutagens and by treatments such as chemotherapy and radiotherapy, and the mechanisms governing DNA repair or the failure thereof, are essential to progress in developing better prevention and treatment strategies for a variety of cancers.

ARID transcription factors
This class of DNA-binding proteins plays multiple roles in the normal development of a variety of tissues, most prominently fat, bone and muscle. Recent discoveries suggest that these factors help to create activating "bookmarks" in genes that are crucial for establishing and maintaining the identities of these tissues. Therefore, the study of ARID transcription factors may lead to a greater understanding of medical problems ranging from obesity and diabetes to muscular injury, skeletal defects, and cancer.

Genetic influences in responses to cancer and infection
One project focuses on genetic influences in the incidence of Marek’s T-cell lymphoma.  Another is centered on chicken MR1 polymorphism and microbiota that may caused disease in humans.

Non-coding RNA control of mammalian hematopoiesis, immunity and cancer
Understanding the molecular mechanisms that govern immune cell development and function is key for the advance of novel therapeutic approaches to treat autoimmunity and cancer. Noncoding RNAs, in particular microRNAs, play a critical role in shaping the mammalian immune response and hematopoiesis, and are the focus of our research interest.

Molecular and Cellular Biology Faculty

Molecular and Cellular Biology Faculty

Overview
Beckman Research Institute of City of Hope is responsible for fundamentally expanding the world’s understanding of how biology affects diseases such as cancer, HIV/AIDS and diabetes.
 
 
Research Departments/Divisions

City of Hope is a leader in translational research - integrating basic science, clinical research and patient care.
 

Research Shared Services

City of Hope embodies the spirit of scientific collaboration by sharing services and core facilities with colleagues here and around the world.
 

Our Scientists

Our research laboratories are led by the best and brightest minds in scientific research.
 

City of Hope’s Irell & Manella Graduate School of Biological Sciences equips students with the skills and strategies to transform the future of modern medicine.
Develop new therapies, diagnostics and preventions in the fight against cancer and other life-threatening diseases.
 


NEWS & UPDATES
  • It was 2009 when a City of Hope patient in her 40s learned that the cancer she had been fighting for several years had metastasized to her lungs. Her medical team ran genetic tests on the tumor, but none of the drug therapies available at the time targeted the known mutations in the tumor cells. […]
  • Acute myeloid leukemia (AML) is characterized by a rapidly-developing cancer in the myeloid line of blood cells, which is responsible for producing red blood cells, platelets and several types of white blood cells called granulocytes. Because AML grows rapidly, it can quickly crowd out normal blood cells, leadi...
  • Rachel Divine is a yoga therapist and patient leader for the Sheri & Les Biller Patient and Family Resource Center. She’s also a former City of Hope patient. When someone you know has cancer, even the word “cancer” can make you feel nervous, sleepless, depressed or more. But, as a yoga teacher for 15 ...
  •   Diagnosed with type 1 diabetes when she was 9 years old, Gina Marchini accepted the fact that she would need insulin the rest of her life. Every day, she injected herself with the lifesaving hormone. She also carefully controlled her diet and monitored the rise and fall of her blood glucose with military...
  • The defeat of cancer will require a team effort. Nowhere is this more necessary (or apparent) than in efforts to combat two of the most deadly forms of the disease  – pancreatic cancer and triple-negative breast cancer. It’s the approach City of Hope is taking with its newly launched multidisciplinary teams, br...
  • It’s a reasonable question: Why is the National Cancer Institute funding a study on preventing heart failure? The answer is reasonable as well: Rates of heart failure are drastically high among childhood cancer survivors — 15 times higher than among people the same age who were never treated for cancer. T...
  • Many teenagers take a break from academics during the summer, but not the eight high school students enrolled in the California Institute for Regenerative Medicine (CIRM) Creativity Awards program at City of Hope. They took the opportunity to obtain as much hands-on research experience as possible, learning fro...
  • About one in eight women will develop breast cancer at some point in her life. In fact, breast cancer is the most common cancer in American women, behind skin cancer. Although women can’t change some risk factors, such as genetics and the natural aging process, there are certain things they can do to lower thei...
  • As genetic testing becomes more sophisticated, doctors and their patients are finding that such tests can lead to the discovery of previously unknown cancer risks. In his practice at City of Hope, Thomas Slavin, M.D., an assistant clinical professor in the Division of Clinical Cancer Genetics, sees the full spe...
  • And the winners are … everyone in the San Gabriel Valley. The recipients of City of Hope’s first-ever Healthy Living grants have been announced, and the future is looking healthier already. In selecting San Gabriel Valley organizations to receive the grants, City of Hope’s Community Benefits Advisory Council ch...
  • Barry Leshowitz is a former City of Hope patient and a family advisor for the Sheri & Les Biller Patient and Family Resource Center. It’s been almost seven years since I checked into a local hospital in Phoenix for a hip replacement, only to be informed by the surgeon that he had canceled the surgery....
  • When it comes to science, the best graduate schools don’t just train scientists, they prepare their students for a lifetime of learning, accomplishment and positive impact on society. At City of Hope, the Irell & Manella Graduate School of Biological Sciences goes one step further – by preparing students to...
  • Cancer affects not just the cancer patient, but everyone around him or her, even after treatment is complete. The challenges can include the fear of cancer recurrence, coping with cancer’s economic impact and the struggle to achieve work-life balance post-treatment. Family members and loved ones of cancer patie...
  •   Bladder cancer facts: Bladder cancer is a disease in which malignant (cancer) cells form in the tissues of the bladder. 2015 estimates: 74,000 new cases of bladder cancer diagnosed 16,000 deaths from bladder cancer (about 11,510 in men and 4,490 in women) Risk factors for bladder cancer: Smoking: Smokers...
  • Women with ovarian cancer have questions about the most promising treatment options, revolutionary research avenues, survivorship and, of course, the potential impact on their personal lives. Now, together in one place, are experts who can provide answers. On Saturday, Sept. 12, the 2015 Ovarian Cancer Survivor...